1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lesantik [10]
3 years ago
15

What is 3/15 in a decimal

Mathematics
2 answers:
chubhunter [2.5K]3 years ago
7 0
\frac{3}{15} = \frac{3*1}{3*5} =^{2/} \frac{1}{5} = \frac{2}{10} =0.2
Damm [24]3 years ago
4 0
Well, since 3/15 can be simplified to 1/5 by dividing the top and the bottom by 3, you would just need to find the decimal of 1/5 which is much more commonly recognized. it's .2 (becasue 1/10 would be .1 and 1/5=2/10 so .1x2=.2) 
You might be interested in
Walmart is selling
nordsb [41]

Answer:

2 notebooks are $2.48, 7 notebooks are $8.68

Step-by-step explanation:

Unit rate is 1.24

1.24x2= $2.48

1.24x7= $8.68

6 0
3 years ago
Does an obtuse angle have a complement
Hunter-Best [27]
No an obtuse angle does not have a complement 
6 0
3 years ago
What are the slope and the y-intercept of the linear function that is represented by the equation Y=9X-2?
Novosadov [1.4K]

Slope intercept form is

y = mx + b

where m is the slope and b is the y intercept.

Here we have

y = 9x - 2

so a slope of 9 and y intercept of -2

Answer: third choice


3 0
3 years ago
What is the derivative of 1/square root 4x.
Bumek [7]

Answer:

\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4x^\bigg{\frac{3}{2}}}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

Exponential Properties

  • Exponential Property [Rewrite]:                                                                   \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Property [Root Rewrite]:                                                           \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)  

Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify.</em>

\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg]

<u>Step 2: Differentiate</u>

  1. Simplify:                                                                                                         \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \bigg( \frac{1}{2\sqrt{x}} \bigg)'
  2. Rewrite [Derivative Property - Multiplied Constant]:                                   \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{1}{\sqrt{x}} \bigg)'
  3. Rewrite [Exponential Rule - Root Rewrite]:                                                 \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{1}{x^\Big{\frac{1}{2}}} \bigg)'
  4. Rewrite [Exponential Rule - Rewrite]:                                                           \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( x^\bigg{\frac{-1}{2}} \bigg)'
  5. Derivative Rule [Basic Power Rule]:                                                             \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{-1}{2} x^\bigg{\frac{-3}{2}} \bigg)
  6. Simplify:                                                                                                         \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4} x^\bigg{\frac{-3}{2}}
  7. Rewrite [Exponential Rule - Rewrite]:                                                           \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4x^\bigg{\frac{3}{2}}}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

5 0
3 years ago
In the diagram, AB = 12, DX = 2.5, and BX = 5. Find CD. Show all work.
Naily [24]
I found your complete question in another source.
 See attached image. 
 For this case what you should see is that you have two similar triangles.
 We then have the following relationship:
 ((AB) / (BX)) = ((CD) / (DX))
 We cleared CD:
 CD = ((AB) / (BX)) * (DX)
 Substituting the values:
 CD = ((12) / (5)) * (2.5)
 CD = 6
 Answer: 
 CD = 6

5 0
3 years ago
Other questions:
  • Solve the equation and check your solution. (If there is no solution, enter NO SOLUTION.) (4x − 6) divided by (4x+3) = 2/3
    7·1 answer
  • -6(x+7)=-4x-2<br> How many solutions does it have
    5·1 answer
  • Bowl A contains 6 apples and 3 mangoes this can be written as, Bowl B contain 8 apples and 2 mangoes this can be written as. Wha
    8·1 answer
  • 50*50+60+90+40-60-43-89-30-34+12​
    8·2 answers
  • AWARDING BRAINLIEST HELP! The length of FH is 9 cm. What is the length of GK?
    7·2 answers
  • The point (1,−1) satisfies the inequality 40x−22y≤50.
    11·1 answer
  • [No links please and explain it out.♡︎]
    5·2 answers
  • Can someone pls help me
    9·1 answer
  • The Maron Luggage Company claims they have a suitcase large enough to fit a 34-inch baseball bat inside. If the suitcase has hei
    9·1 answer
  • What is the distance between (-5, 3) and (-5,-3)?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!