<h3>
<u>QUES</u><u>TION</u><u>:</u><u> </u></h3>
what is x/9 = 9/27 help plz
<h3>
<u>ANSWER</u><u> </u><u>AND</u><u> </u><u>SOLU</u><u>TION</u><u>:</u><u> </u></h3>
<u>Reduce</u><u> </u><u>first</u><u> </u><u>the</u><u> </u><u>fraction</u><u> </u><u>with</u><u> </u><u>9</u>

<u>
</u>
<u>Now</u><u> </u><u>simpli</u><u>fy</u><u> </u><u>using</u><u> </u><u>cross-multiply</u>
<u>
</u>
<u>
</u>
<u>
</u>
<u>Lastly</u><u> </u><u>divide</u><u> </u><u>both</u><u> </u><u>sides</u>
<u>
</u>
<u>
</u>
<u>
</u>
<h3>
<u>FINAL</u><u> </u><u>ANSWER</u><u>:</u></h3>

HOPE THIS HELP YOU! HAVE A NICE DAY!
~kimtaetae92~
The vertex of the function f(x) exists (1, 5), the vertex of the function g(x) exists (-2, -3), and the vertex of the function f(x) exists maximum and the vertex of the function g(x) exists minimum.
<h3>How to determine the vertex for each function is a minimum or a maximum? </h3>
Given:
and

The generalized equation of a parabola in the vertex form exists

Vertex of the function f(x) exists (1, 5).
Vertex of the function g(x) exists (-2, -3).
Now, if (a > 0) then the vertex of the function exists minimum, and if (a < 0) then the vertex of the function exists maximum.
The vertex of the function f(x) exists at a maximum and the vertex of the function g(x) exists at a minimum.
To learn more about the vertex of the function refer to:
brainly.com/question/11325676
#SPJ4
Recall that

There are three cases to consider:
(1) When

, we have

and

, so

(2) When

and

, we get

and

, so

(3) When

, we have

and

, so

So