Combined terms: 85 m + 56
Answer:
See explanation!
Step-by-step explanation:
We know that the maximum miles allowed before oil change is 5,000miles (<u>thus Kaci can drive less or up to 5,000 miles but not more</u>).
Kaci has already driven 3,450miles since last oil change.
Inequalities are typically employed to show a relating or comparative relationship between expressions and can be identified by the sybolism of less, more or/and equal to (i.e.
,
,
,
).
Let us denote the miles Kaci can drive before oil changing again by
, then we can write the following inequality:

solving for the remaining miles
allowed

Thus Kaci can drive up to and including 1550 miles before chaging car oil again.
Answer:
∠B ≅ ∠F ⇒ proved down
Step-by-step explanation:
<em>In the </em><em>two right triangles</em><em>, if the </em><em>hypotenuse and leg</em><em> of the </em><em>1st right Δ ≅</em><em> the </em><em>hypotenuse and leg</em><em> of the </em><em>2nd right Δ</em><em>, then the </em><em>two triangles are congruent</em>
Let us use this fact to solve the question
→ In Δs BCD and FED
∵ ∠C and ∠E are right angles
∴ Δs BCD and FED are right triangles ⇒ (1)
∵ D is the mid-point of CE
→ That means point D divides CE into 2 equal parts CD and ED
∴ CD = ED ⇒ (2) legs
∵ BD and DF are the opposite sides to the right angles
∴ BD and DF are the hypotenuses of the triangles
∵ BD ≅ FD ⇒ (3) hypotenuses
→ From (1), (2), (3), and the fact above
∴ Δ BCD ≅ ΔFED ⇒ by HL postulate of congruency
→ As a result of congruency
∴ BC ≅ FE
∴ ∠BDC ≅ ∠FDE
∴ ∠B ≅ ∠F ⇒ proved