Answer:
and 
Step-by-step explanation:
Given

Required
Find x and y
In the second equation. Assume that:

Substitute
in the first equation


Collect like terms


Multiply through by 5


Solve for x

Substitute this value of x in 





3218.7/2 is 1 mile so answer is
2(3218.7/2)= 11265.45
Answer:
212 children, and 265 adults
Step-by-step explanation:
To find the number of children and adults, we can set up a systems of equations.
x= number of children
y= number of adults
Equation 1: Price
1.50x+2.25y=914.25
Equation 2: Total number of people
x+y=477
Now, let's solve the equation using substitution.
Rearrange the second equation to solve for one variable.
x+y=477
x=477-y
Now plug x equals into the first equation, and solve for y.
1.50x+2.25y=914.25
1.50(477-y)+2.25y=914.25
715.5-1.50y+2.25y=914.25
715.5+0.75y=914.25
0.75y=198.75
y=265
We just solved for the number of adults. Now let's plug y equals into the second equation to find the number of children.
x+y=477
x+265=477
x=212
476.00×5%=23.80 tax=476+23.80=499.80
499.80×15%=74.97
499.80+74.97=574.77
Answer:
20pi or 62.83
Step-by-step explanation:
when r=4
pi r^2
16pi
when r=6
pi r^2
36pi
36pi-16pi=20pi or 62.83