Answer:
A, C, D
Step-by-step explanation:
One way to answer this question is to use synthetic division to find the remainder from division of the polynomial by (x-3). If the polynomial is written in Horner form, evaluating the polynomial for x=3 is substantially similar.
A(x) = ((x -2)x -4)x +3
A(3) = ((3 -2)3 -4)3 +3 = -3 +3 = 0 . . . . . has a factor of (x -3)
__
B(x) = ((x +3)x -2)x -6
B(3) = ((3 +3)3 -2)3 -6 = (16)3 -6 = 42 . . . (x -3) is not a factor
__
C(x) = (x -2)x^3 -27
C(3) = (3 -2)3^3 -27 = 0 . . . . . . . . . . . . . has a factor of (x -3)
__
D(x) = (x^3 -20)x -21
D(3) = (3^3 -20)3 -21 = (7)3 -21 = 0 . . . . has a factor of (x -3)
___
The polynomials of choice are A(x), C(x), and D(x).
Answer:
x >25
Step-by-step explanation:
Answer: Alternative optimal
Step-by-step explanation:
Alternative optimal solution means that
there are several optimal solutions that can be used to get identical objective function value.
Therefore, a scenario whereby the optimal objective function contour line coincides with one of the binding constraint lines on the boundary of the feasible region will lead to alternative optimal solution.
The first car went through 32.5 gallons and the second car went through 37.14 gallons of gas.
well what are the questions ?