If there isn't a base, the base is 10 :)
Explanation
This exercise is about evaluating a function at a particular argument. To do that, we replace the variable with the argument in the formula of the function, and simplify.
Let's do that:
![\begin{gathered} f(19)=\frac{3}{19+2}-\sqrt[]{19-3}, \\ \\ f(19)=\frac{3}{21}-\sqrt[]{16}, \\ \\ f(19)=\frac{1}{7}-4, \\ \\ f(19)=\frac{1-28}{7}, \\ \\ f(19)=-\frac{27}{7}\text{.} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20f%2819%29%3D%5Cfrac%7B3%7D%7B19%2B2%7D-%5Csqrt%5B%5D%7B19-3%7D%2C%20%5C%5C%20%20%5C%5C%20f%2819%29%3D%5Cfrac%7B3%7D%7B21%7D-%5Csqrt%5B%5D%7B16%7D%2C%20%5C%5C%20%20%5C%5C%20f%2819%29%3D%5Cfrac%7B1%7D%7B7%7D-4%2C%20%5C%5C%20%20%5C%5C%20f%2819%29%3D%5Cfrac%7B1-28%7D%7B7%7D%2C%20%5C%5C%20%20%5C%5C%20f%2819%29%3D-%5Cfrac%7B27%7D%7B7%7D%5Ctext%7B.%7D%20%5Cend%7Bgathered%7D)
Answer
Answer:
9. a = -7
10. x = 1
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
Step-by-step explanation:
<u>Step 1: Define equation</u>
a + 6a - 14 = 3a + 6a
<u>Step 2: Solve for </u><em><u>a</u></em>
- Combine like terms: 7a - 14 = 9a
- Subtract 7a on both sides: -14 = 2a
- Divide 2 on both sides: -7 = a
- Rewrite: a = -7
<u>Step 3: Check</u>
<em>Plug in a into the original equation to verify it's a solution.</em>
- Substitute in <em>a</em>: -7 + 6(-7) - 14 = 3(-7) + 6(-7)
- Multiply: -7 - 42 - 14 = -21 - 42
- Subtract: -49 - 14 = -63
- Subtract: -63 = -63
Here we see that -63 is equal to -63.
∴ a = -7 is a solution of the equation.
<u>Step 4: Define equation</u>
-12 - 4x = 8x + 4(1 - 7x)
<u>Step 5: Solve for </u><em><u>x</u></em>
- Distribute 4: -12 - 4x = 8x + 4 - 28x
- Combine like terms: -12 - 4x = -20x + 4
- Add 20x on both sides: -12 + 16x = 4
- Add 12 on both sides: 16x = 16
- Divide 16 on both sides: x = 1
<u>Step 6: Check</u>
<em>Plug in x into the original equation to verify it's a solution.</em>
- Substitute in <em>x</em>: -12 - 4(1) = 8(1) + 4(1 - 7(1))
- Multiply: -12 - 4 = 8 + 4(1 - 7)
- Subtract: -16 = 8 + 4(-6)
- Multiply: -16 = 8 - 24
- Subtract: -16 = -16
Here we see that -16 does indeed equal -16.
∴ x = 1 is a solution of the equation.
Answer:

Step-by-step explanation:
1. 
2.
3. divide both sides by 7
4. 
Closed circle on -1 and the line goes to the left