1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sergeeva-Olga [200]
4 years ago
8

A. True

Computers and Technology
1 answer:
vlada-n [284]4 years ago
8 0
True <span>when an input file is opened, the read position is initially set to the first item in the file.</span>
You might be interested in
What is the output of the second println statement in the main method, public class foo { int i ; static int s ; public sttic vo
Sedaia [141]

Answer:

b) f2.i is 1 f2.s is 2

Explanation:

i is an instance variable and s is static, shared by all objects of the Foo class.

6 0
4 years ago
The producer thread will alternate between sleeping for a random period of time and inserting a random integer into the buffer.
Llana [10]

Answer:

// Producer Thread

void *producer(void *param) {

buffer_item item;

while (true) {

item = rand() % 100;

sem_wait(&empty);

pthread_mutex_lock(&mutex);

if (insert_item(item))

printf("Can't insert item\n");

else

printf("Producer %d: produced %d\n", *((int*)param), item);

pthread_mutex_unlock(&mutex);

sem_post(&full);

}

}

// Consumer Thread

void *consumer(void *param) {

while (true) {

buffer_item item = NULL;

if (in > 0)

item = buffer[in - 1];

sem_wait(&full);

pthread_mutex_lock(&mutex);

if (remove_item(&item))

printf("Can't remove item\n");

else

printf("Consumer %d: consumed %d\n", *((int*)param), item);

pthread_mutex_unlock(&mutex);

sem_post(&empty);

}

}

Explanation:

An outline of the producer and consumer threads appears as shown above.

3 0
3 years ago
What layer in the Transmission Control Protocol/Internet Protocol (TCP/IP) model is responsible for defining a way to interpret
sweet-ann [11.9K]

Answer:

The data-link layer

Explanation:

The physical layer and data-link layer are often confused a lot especially in terms of what they do in the TCP/IP 7 layer protocol. The physical layer as the name suggests represents the physical devices like the cables and the connectors that join or interconnect computers together. This layer is also responsible for sending the signals over to other connections of a network. The data-link, on the other hand, translates and interprets these sent binary signals so that network devices can communicate. This layer is responsible in adding mac addresses to data packets and encapsulating these packets into frames before being placed on the media for transmission. Since it resides in between the network layer and the physical layer, it connects the upper layers of the TCP/IP model to the physical layer.

3 0
4 years ago
Write a MIPS assembly language program that
8_murik_8 [283]

Answer:

123456789098765432

Explanation:

asdfghjklokjhgfdsasertyujn nbgfdfvbnjujhgvfcdec vgfredfghjmk

5 0
3 years ago
There will be 10 numbers stored contiguously in the computer at location x 7000 . Write a complete LC-3 program, starting at loc
Artist 52 [7]

Answer:

The LC-3 (Little Computer 3) is an ISA definition for a 16-bit computer. Its architecture includes physical memory mapped I/O via a keyboard and display; TRAPs to the operating system for handling service calls; conditional branches on N, Z, and P condition codes; a subroutine call/return mechanism; a minimal set of operation instructions (ADD, AND, and NOT); and various addressing modes for loads and stores (direct, indirect, Base+offset, PC-relative, and an immediate mode for loading effective addresses). Programs written in LC-3 assembler execute out of a 65536 word memory space. All references to memory, from loading instructions to loading and storing register values, pass through the get Mem Adr() function. The hardware/software function of Project 5 is to translate virtual addresses to physical addresses in a restricted memory space. The following is the default, pass-through, MMU code for all memory references by the LC-3 simulator.

unsigned short int get Mem Adr(int va, int rwFlg)

{

unsigned short int pa;

// Warning: Use of system calls that can cause context switches may result in address translation failure

// You should only need to use gittid() once which has already been called for you below. No other syscalls

// are necessary.

TCB* tcb = get TCB();

int task RPT = tcb [gettid()].RPT;

pa = va;

// turn off virtual addressing for system RAM

if (va < 0x3000) return &memory[va];

return &memory[pa];

} // end get MemAdr

Simple OS, Tasks, and the LC-3 Simulator

We introduce into our simple-os a new task that is an lc3 Task. An lc3 Task is a running LC-3 simulator that executes an LC-3 program loaded into the LC-3 memory. The memory for the LC-3 simulator, however, is a single global array. This single global array for memory means that alllc3 Tasks created by the shell use the same memory for their programs. As all LC-3 programs start at address 0x3000 in LC-3, each task overwrites another tasks LC-3 program when the scheduler swaps task. The LC-3 simulator (lc3 Task) invokes the SWAP command every several LC-3 instruction cycles. This swap invocation means the scheduler is going to be swapping LC-3 tasks before the tasks actually complete execution so over writing another LC-3 task's memory in the LC-3 simulator is not a good thing.

You are going to implement virtual memory for the LC-3 simulator so up to 32 LC-3 tasks can be active in the LC-3 simulator memory without corrupting each others data. To implement the virtual memory, we have routed all accesses to LC-3 memory through a get Mem Adr function that is the MMU for the LC-3 simulator. In essence, we now have a single LC-3 simulator with a single unified global memory array yet we provide multi-tasking in the simulator for up to 32 LC-3 programs running in their own private address space using virtual memory.

We are implementing a two level page table for the virtual memory in this programming task. A two level table relies on referring to two page tables both indexed by separate page numbers to complete an address translation from a virtual to a physical address. The first table is referred to as the root page table or RPT for short. The root page table is a fixed static table that always resides in memory. There is exactly one RPT per LC-3 task. Always.

The memory layout for the LC=3 simulator including the system (kernel) area that is always resident and non-paged (i.e., no virtual address translation).

The two figures try to illustrate the situation. The lower figure below demonstrates the use of the two level page table. The RPT resident in non-virtual memory is first referenced to get the address of the second level user page table or (UPT) for short. The right figure in purple and green illustrates the memory layout more precisely. Anything below the address 0x3000 is considered non-virtual. The address space is not paged. The memory in the region 0x2400 through 0x3000 is reserved for the RPTs for up to thirty-two LC-3 tasks. These tables are again always present in memory and are not paged. Accessing any RPT does not require any type of address translation.

The addresses that reside above 0x3000 require an address translation. The memory area is in the virtual address space of the program. This virtual address space means that a UPT belonging to any given task is accessed using a virtual address. You must use the RPT in the system memory to keep track of the correct physical address for the UPT location. Once you have the physical address of the UPT you can complete the address translation by finding the data frame and combining it with the page offset to arrive at your final absolute physical address.

A Two-level page table for virtual memory management.

x7000 123F x7000 0042

x7001 6534 x7001 6534

x7002 300F x7002 300F

x7003 4005 after the program is run, memory x7003 4005

x7004 3F19

7 0
3 years ago
Read 2 more answers
Other questions:
  • Write a recursive method public static String reverse(String str) that computes the reverse of a string. For example, reverse("f
    6·1 answer
  • Do you believe that OOP should be phased out and we should start working on some alternative
    6·1 answer
  • How much electricity is in the human brain? ​
    8·2 answers
  • What is the use of form in HTML​
    12·1 answer
  • List 3 items that were on kens resume that should have been excluded
    13·2 answers
  • ____________ hackers break into systems legally for non-malicious reasons such as to test system security vulnerabilities
    7·2 answers
  • 14. Which of the following information about the ESRT T-teen rating rating is FALSE?
    15·1 answer
  • Write an algorithm (pseudo-code) that takes an unsorted list of n integers and outputs a sorted list of all duplicate integers.
    6·1 answer
  • What Microsoft feature enables you to represent text as colorful visuals
    12·1 answer
  • Ryan would like to copy a list of contacts from a colleague into his personal address book. The list of contacts is contained in
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!