Answer:
<u>, where "n" is number of objects per page.</u>
Step-by-step explanation:
<em>The amount of objects each page could hold is given by dividing the amount of objects that you have, by the number of pages. </em>
<em>• Let the number of objects per page be "n".</em>
<em>Then, the equation that gives us the number of objects for each page, in such way that we have an equal amount of objects per page is:</em>
.
Answer:
4
Step-by-step explanation:
2(8)-3(4)
16-12
4
Answer:
C.
Step-by-step explanation:
I just got it right
So you need to come up with a perfect square that works for the x coefficients.
like.. (2x + 2)^2
(2x+2)(2x+2) = 4x^2 + 8x + 4
Compare this to the equation given. Our perfect square has +4 instead of +23. The difference is: 23 - 4 = 19
I'm going to assume the given equation equals zero..
So, If we add subtract 19 from both sides of the equation we get the perfect square.
4x^2 + 8x + 23 - 19 = 0 - 19
4x^2 + 8x + 4 = - 19
complete the square and move 19 over..
(2x+2)^2 + 19 = 0
factor the 2 out becomes 2^2 = 4
ANSWER: 4(x+1)^2 + 19 = 0
for a short cut, the standard equation
ax^2 + bx + c = 0 becomes a(x - h)^2 + k = 0
Where "a, b, c" are the same and ..
h = -b/(2a)
k = c - b^2/(4a)
Vertex = (h, k)
this will be a minimum point when "a" is positive upward facing parabola and a maximum point when "a" is negative downward facing parabola.
Answer:
im pretty sure the answer is 150
Step-by-step explanation:
hope this helps <3