<span>zinc, nitrate and silver.
Hope this helps.
</span>
Answer:
A. 28 years
Explanation:
Applying,
R = R'(2ᵃ/ⁿ).............. Equation 1
Where R = Original sample, R' = Sample left after decay, a = Total time taken to decay, n = half life.
From the question,
Given: R = 12 g, R' = 6 g, a = 28 years.
Substitute into equation 1 and solve for n
12 = 6(2²⁸/ⁿ)
12/6 = 2²⁸/ⁿ
2²⁸/ⁿ = 2
Equation the base,
28/n = 1
n = 28 years.
Hence the half-life is 28 years
Answer: The formula is <u>C2H7NO3S</u> or <u>NH2CH2CH2SO3H</u>
<u />
Hope this helps!
Mg3(PO4)2 - the molar mass would be 262g/mol, which is 100%
Atomic mass of Mg is 24, since we have 3Mg we multiply by 3 and get a mass of 72
262 : 100% = 72 : x%
x = 72*100 / 262
x = 27.5%
And do that for every element — get the molar mass of P and multiply by 2, use a ratio, and get the molar mass of O and multiply by 8 and use ratios :)
The mass of NaCl needed for the reaction is 91.61 g
We'll begin by calculating the number of mole of F₂ that reacted.
- Gas constant (R) = 0.0821 atm.L/Kmol
PV = nRT
1.5 × 12 = n × 0.0821 × 280
18 = n × 22.988
Divide both side by 22.988
n = 18 / 22.988
n = 0.783 mole
Next, we shall determine the mole of NaCl needed for the reaction.
F₂ + 2NaCl —> Cl₂ + 2NaF
From the balanced equation above,
1 mole of F₂ reacted with 2 moles of NaCl.
Therefore,
0.783 mole F₂ will react with = 0.783 × 2 = 1.566 moles of NaCl.
Finally, we shall determine the mass of 1.566 moles of NaCl.
- Molar mass of NaCl = 23 + 35.5 = 58.5 g/mol
Mass = mole × molar mass
Mass of NaCl = 1.566 × 58.5
Mass of NaCl = 91.61 g
Therefore, the mass of NaCl needed for the reaction is 91.61 g
Learn more about stiochoimetry: brainly.com/question/25830314