Every compound or element has a fixed number of molecules
per mole. This is given by the Avogadros number which is about 6.022 x 10^23
molecules per mole. Therefore:
molecules = 2.50 moles * (6.022 x 10^23 molecules / mole)
<span>molecules = 1.5055 x 10^24 molecules of SO2</span>
Answer:
We need 8.11 grams of glucose for this solution
Explanation:
Step 1: Data given
Molarity of the glucose solution = 0.300 M
Total volume = 0.150 L
The molecular weight of glucose = 180.16 g/mol
Step 2: Calculate moles of glucose in the solution
Moles glucose = molarity solution * volume
Moles glucose = 0.300 M * 0.150 L
Moles glucose = 0.045 moles glucose
Step 3: Calculate mass of glucose
MAss glucose = moles glucose* molecular weight of glucose
MAss glucose = 0.045 moles * 180.16 g/mol
MAss glucose = 8.11 grams
We need 8.11 grams of glucose for this solution
One benefit of using ph instead of molar concentrations is that since molarity is a rate of “ moles per liter" , Molarity (M) is used to measure the concentration of hydrogen ions in a solution, which is used with pH applications. ... The H+ is the molarity number, which shows the concentration of hydrogen ions in the solution.
I have the same question and cant still answer it so I need the answers
Rubisco is an important enzyme that helps in making lifeless carbon of carbon dioxide into organic molecules. Rubisco takes carbon dioxide and attaches it to ribulose bisphosphate, a
short sugar chain with five carbon atoms that has rubp as its shortcut. Rubisco then clips the
lengthened chain into to polyglycerate pices, which are pretty flexible molecules and are also used in the feeding of the plant. Most of it is used in the photosynthesis pathway, but some of it is used to make sucrose
(table sugar) to feed the rest of the plant, or stored away in the form
of starch for later use. Hence, rubisco is crucial in the storing of the energy that is created from photosynthesis.