1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Stels [109]
3 years ago
11

Find the solution using the Quadratic Formula. (show work) 2x + 8x+ 5 = 0 a. 47 ſ6 b. -27 56 c. -2± √3​

Mathematics
1 answer:
Nookie1986 [14]3 years ago
8 0

Answer:

The roots of the equation for the given quadratic equation is               -2\pm \frac{\sqrt{6}}{2} .

Step-by-step explanation:

Given quadratic equation as :

2 x² + 8 x + 5 = 0

The roots of the quadratic equation  ax² + bx + c = 0 as can be find as :

x = \frac{-b\pm \sqrt{b^{2}-4\times a\times c}}{2\times a}

x = \frac{-8\pm \sqrt{8^{2}-4\times 2\times 5}}{2\times 2}

or, x = \frac{-8\pm \sqrt{64-40}}{4}

Or, x = \frac{-8\pm \sqrt{24}}{4}

Or, x = \frac{-8\pm 2\sqrt{6}}{4}

∴ x = -2\pm \frac{\sqrt{6}}{2}

Hence The roots of the equation for the given quadratic equation is -2\pm \frac{\sqrt{6}}{2} . Answer

You might be interested in
2〖sen〗^2 x+3 senx+1=0
KonstantinChe [14]

2 sin²(<em>x</em>) + 3 sin(<em>x</em>) + 1 = 0

(2 sin(<em>x</em>) + 1) (sin(<em>x</em>) + 1) = 0

2 sin(<em>x</em>) + 1 = 0   OR   sin(<em>x</em>) + 1 = 0

sin(<em>x</em>) = -1/2   OR   sin(<em>x</em>) = -1

The first equation gives two solution sets,

<em>x</em> = sin⁻¹(-1/2) + 2<em>nπ</em> = -<em>π</em>/6 + 2<em>nπ</em>

<em>x</em> = <em>π</em> - sin⁻¹(-1/2) + 2<em>nπ</em> = 5<em>π</em>/6 + 2<em>nπ</em>

(where <em>n</em> is any integer), while the second equation gives

<em>x</em> = sin⁻¹(-1) + 2<em>nπ</em> = -<em>π</em>/2 + 2<em>nπ</em>

2 cot(<em>x</em>) sec(<em>x</em>) + 2 sec(<em>x</em>) + cot(<em>x</em>) + 1 = 0

2 sec(<em>x</em>) (cot(<em>x</em>) + 1) + cot(<em>x</em>) + 1 = 0

(2 sec(<em>x</em>) + 1) (cot(<em>x</em>) + 1) = 0

2 sec(<em>x</em>) + 1 = 0   OR   cot(<em>x</em>) + 1 = 0

sec(<em>x</em>) = -1/2   OR   cot(<em>x</em>) = -1

cos(<em>x</em>) = -2   OR   tan(<em>x</em>) = -1

The first equation has no (real) solutions, since -1 ≤ cos(<em>x</em>) ≤ 1 for all (real) <em>x</em>. The second equation gives

<em>x</em> = tan⁻¹(-1) + <em>nπ</em> = -<em>π</em>/4 + <em>nπ</em>

<em />

sin(<em>x</em>) cos²(<em>x</em>) = sin(<em>x</em>)

sin(<em>x</em>) cos²(<em>x</em>) - sin(<em>x</em>) = 0

sin(<em>x</em>) (cos²(<em>x</em>) - 1) = 0

sin(<em>x</em>) (-sin²(<em>x</em>)) = 0

sin³(<em>x</em>) = 0

sin(<em>x</em>) = 0

<em>x</em> = sin⁻¹(0) + 2<em>nπ</em> = 2<em>nπ</em>

<em />

2 cos²(<em>x</em>) + 2 sin(<em>x</em>) - 12 = 0

2 (1 - sin²(<em>x</em>)) + 2 sin(<em>x</em>) - 12 = 0

-2 sin²(<em>x</em>) + 2 sin(<em>x</em>) - 10 = 0

sin²(<em>x</em>) - sin(<em>x</em>) + 5 = 0

Using the quadratic formula, we get

sin(<em>x</em>) = (1 ± √(1 - 20)) / 2 = (1 ± √(-19)) / 2

but the square root contains a negative number, which means there is no real solution.

2 csc²(<em>x</em>) + cot²(<em>x</em>) - 3 = 0

2 (cot²(<em>x</em>) + 1) + cot²(<em>x</em>) - 3 = 0

3 cot²(<em>x</em>) - 1 = 0

cot²(<em>x</em>) = 1/3

tan²(<em>x</em>) = 3

tan(<em>x</em>) = ± √3

<em>x</em> = tan⁻¹(√3) + <em>nπ</em>  OR   <em>x</em> = tan⁻¹(-√3) + <em>nπ</em>

<em>x</em> = <em>π</em>/3 + <em>nπ</em>   OR   <em>x</em> = -<em>π</em>/3 + <em>nπ</em>

7 0
3 years ago
LIKE I ACTUALLY NEED HELP THIS IS LITERAL TESTING NOT NO QUIZ.
Mekhanik [1.2K]

Answer:

2 because if x=0 y=1 and 2 is closest so a and b

4 0
2 years ago
The endpoints of line segment RS are R(-2,-1), and S (2,3). Find the coordinates of the midpoint of line segment RS.
madam [21]
Midpoint coordinates are  ( - 2 + 2) / 2 , (-1+3) / 2

                                         =      (0,1) Answer
6 0
3 years ago
You are planning a survey of starting salaries for recent business major graduates from your college. From a pilot study you est
xxTIMURxx [149]

Answer:

1245

Step-by-step explanation:

-Given the standard deviation is $9000 and the margin of error is $500.

-the minimum sample size at a 95% confidence level can be calculated using the formula:

n\geq( \frac{z\sigma}{MOE})^2\\\\\\\geq (\frac{1.96\times 9000}{500})^2\\\\\\\geq 1244.6784\approx 1245

Hence, the minimum  sample size is 1245

*Since there's no data fromw which we are drawing our variables, we can manually input our parameters in excel and calculate as attached.

5 0
3 years ago
PLEASE HELP ONLY THE FIRST 2 PAGES I NEED EXPLAINATION ON 8, 7, 10, 11, 14,13
Gemiola [76]
Remember

area of paralellogram is height times legnth of base
7.
height=18.7
legnth of base=6
area=18.7*6=112.2 yd^2

8.
height=5
leggnth of base=6
aera=5*6=30 m^2


10.
flip on side
height=7
legnth of base=15.1
area=7 times 15.1=105.7 ft^2

11.
height=10.2
legnth of base=14.2
area=14.2 times 10.2=144.84 cm^2

13.
height=18
legnth of base=19
area=18*19=342 in^2

14.
height=18
legnth of base=18
area=18*18=324 mi^2

7 0
3 years ago
Other questions:
  • In addition to the facts in the diagram, which other statements are necessary to prove that ∆ABC is congruent to ∆EFG by the ASA
    6·2 answers
  • A 30 minute TV program consists of three commercials, each 2 1/2 minutes long, and four equal length entertainment segments. How
    7·1 answer
  • What is the solution to the system?<br> 0.5x + 0.6y = 1.7<br> −x − 0.9y = −4.3
    10·1 answer
  • 1/2x + 1/3y = 7
    8·1 answer
  • PLEASE. WILL GIVE BRAINLIEST
    7·1 answer
  • Can somebody help me with this ?? :)
    14·1 answer
  • If ethan has 109 points and he spends 52 out of his 109 points how many will he have
    5·2 answers
  • You are taking part in a 10 km charity walk. It takes you 3.25 hours to complete the walk. What was your average walking speed,
    15·1 answer
  • Which transformation could NOT be used to prove that two circles are congruent to one another?
    13·1 answer
  • In 15 minutes, Beth plays 5 songs on her saxophone. What is the UNIT RATE? (How many minutes for 1 song?)
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!