The more powerful an appliance is, the more amounts of energy it uses. For instance a jack hammer that does not create a lot of destruction or change does not use a lot of energy. If a jack hammer that creates a lot of destruction and change probably uses a lot more energy and makes more sound.
We know avogadro's number = 6.023 x 10²³
1 amu = 1 atomic mass unit = 1/ (6.023 x 10²³) gm = 1.66 x 10⁻²⁴grams
<span>Now, to convert amu to grams,
131.29 amu = 131.29 x 1.66 x 10</span>⁻²⁴grams
<span>= 2.18 x 10</span>⁻²²<span> grams is the answer</span>
Answer:
The electric field inside the wire will remain the same or constant, while the drift velocity will by a factor of four.
Explanation:
Electron mobility, μ =
where
= Drift velocity
E = Electric field
Given that the electric field strength = 1.48 V/m,
Therefore since the electric potential depends on the length of the wire and the attached potential difference, then when the electron mobility is increased 4 times the Electric field E will be the same but the drift velocity will increase four times. That is
4·μ = 
<span>Total KE = KE (rotational) + KE (translational)
Moment of inertia of sphere is I = (2/5)mr^2
So KE (rotational) = (1/2) x I x w^2 = (1/2) x (2/5)mr^2 x w^2 = (1/5) x m x r^2 x w^2
KE (translational) = (1/2) x m x v^2 = (1/2) x m x (rw)^2 = (1/2) x m x r^2 x w^2
Hence KE = (1/5) x m x r^2 x w^2 + (1/2) x m x r^2 x w^2 = m x r^2 x w^2 ((1/5) + (1/2))
KE = (7/10) m x r^2 x w^2
Calculating the fraction of rotational kinetic energy to total kinetic energy,
= rotational kinetic energy / total kinetic energy
= (1/5) x m x r^2 x w^2 / (7/10) m x r^2 x w^2 = (1/5) / (7/10) = 2 / 7
The answer is 2 / 7</span>