Answer:
The mass of the sand that will fall on the disk to decrease the is 0.3375 kg
Explanation:
Moment before = Moment after

where;
I is moment of inertia = Mr² = 0.3 x (0.3)² = 0.027 kg.m²
substitute this in the above equation;
![m = \frac{ 0.027[3(2 \pi) - 2(2 \pi)]} {0.2^2 * 6\pi } = \frac{ 0.027[6 \pi - 4\pi]} {0.2^2 * 4\pi }\\\\m = 0.3375kg](https://tex.z-dn.net/?f=m%20%3D%20%5Cfrac%7B%200.027%5B3%282%20%5Cpi%29%20%20-%202%282%20%5Cpi%29%5D%7D%20%7B0.2%5E2%20%2A%206%5Cpi%20%7D%20%3D%20%5Cfrac%7B%200.027%5B6%20%5Cpi%20%20-%204%5Cpi%5D%7D%20%7B0.2%5E2%20%2A%204%5Cpi%20%7D%5C%5C%5C%5Cm%20%3D%200.3375kg)
Therefore, the mass of the sand that will fall on the disk to decrease the is 0.3375 kg
Explanation:
Light is not invisible
sound cant travel in a vacuum
Answer:
12m
Explanation:
Given parameters:
Distance walked westward = 2.8m
Time of travel = 5min
Distance walked eastward = 9.2m
Time of travel = 10min
Unknown:
The total shopper's travel distance = ?
Solution:
Total distance traveled is the sum of the length of path covered by a body. It is a scalar quantity.
Total distance = distance walked westward + distance walked eastward
Total distance = 2.8m + 9.2m = 12m