<span>Answers are:
-4 for C in CH4, because carbon has greater electronegativity than hydrogen and he attracts shared electrons.
</span><span>+4 for C in CO2, because carbon has smaller electronegativity than oxygen.
</span><span>+1 for H in both CH4 and H2O, because hydrogen has amaller electronegativity than both carbon and oxygen.
</span>
First, in order to calculate the specific heat capacity of the metal in help in identifying it, we must find the heat absorbed by the calorimeter using:
Energy = mass * specific heat capacity * change in temperature
Q = 250 * 1.035 * (11.08 - 10)
Q = 279.45 cal/g
Next, we use the same formula for the metal as the heat absorbed by the calorimeter is equal to the heal released by the metal.
-279.45 = 50 * c * (11.08 - 45) [minus sign added as energy released]
c = 0.165
The specific heat capacity of the metal is 0.165 cal/gC
Answer:
I would go with A
Explanation:
Because the earths equator is warmed by most direct rays of the sun, air a the equator is hotter than air further north or the south. The hotter air rises up at the equator and as colder air moves in to take its place, the wind begins to blow and push the ocean into waves and currents
I think it would be the sun because it’s the one giving energy to most things, and if you haven’t answered it yet you can put the sun because it’s giving energy to the plans and the environment and it’s the the sun was the effect of the whole thing, sorry if I didn’t help
Answer:
The Answer is A
Explanation:
particles in gas much like any other particles vibrate. but gas is moving constantly so the answer would be A