Answer: increases
Explanation:
Matter exists in three different states, they are solids, liquids and gases. And each of them contains molecules with a certain amount of kinetic energy.
Hence, the addition of heat changes a substance from a liquid to a gas through a process called vaporization, whereby liquid molecules on changing to gases acquire a higher kinetic energy, and move more freely within the containing vessel.
Thus, the higher kinetic energy explains the increase in the average distance between molecules.
Answer:
C) It provides a lower activation energy for the reaction is the correct answer.
Explanation:
- A catalyst increases the rate of the chemical reaction by lowering the activation energy for a reaction.
- Catalyst is used to increase the reaction rate, it remains unchanged in the chemical reaction and it does not change the equilibrium constant.
- Activation energy is a minimum amount of energy required to initiate the reaction.
Molar mass is the ratio of the mass to that amount of the substance. The mass of the barium nitrate in the formula unit is 23.0 grams.
<h3>What is mass?</h3>
The mass of a substance is the product of the molar mass of the compound and the number of moles of the compound.
Given,
Molar mass of barium nitrate = 261.35 g/mol
If,
have a mass of 261.35 g/mol then,
formula units will have a mass of,

Therefore, option C. 23.0 gm is the mass of barium nitrate.
Learn more about mass here:
brainly.com/question/24958554
Answer:
The method of hurrying up a reaction by decreasing its activation energy is called as catalysis, and the circumstance that's added to reduce the activation energy is termed as the catalyst.
Explanation:
Organic catalysts are named as enzymes. Enzymes are protein particles in cells which act as catalysts. Enzymes are proteid particles in groups which act as catalysts. Enzymes rush up biochemical effects in the thing but do not become used up in the method. Nearly all biochemical effects in living things require enzymes. Among an enzyme, biochemical effects go extremely quicker than they would without the enzyme.