The regular hexagon has both reflection symmetry and rotation symmetry.
Reflection symmetry is present when a figure has one or more lines of symmetry. A regular hexagon has 6 lines of symmetry. It has a 6-fold rotation axis.
http://prntscr.com/96ow2n
Rotation symmetry is present when a figure can be rotated (less than 360°) and still look the same as before it was rotated. The center of rotation is a point a figure is rotated around such that the rotation symmetry holds. A regular hexagon can be rotated 6 times at an angle of 60°
<span>http://prntscr.com/96oxjx</span>
[(7**13)**3]*[7**0]
[7**39]*[1]..........> 9.0954 E 32 Strawberries in the field
SIDE LENGTH OF TRIANGLE: 2.14 inches
SIDE LENGTH OF HEXAGON: 6 inches
To solve this problem, we know that the shapes have equal sides as it states “equilateral triangle”. A triangle has 3 sides and a hexagon has 6 sides. We are told the perimeters are the same so you can set their perimeters equal to each other to solve for x. You would get this : 3(1.4x + 2) = 6(0.5x +2)
With basic algebra you would get x= 5
Then you substitute that value into the length sides of the triangle and hexagon. For the triangle you would approx get 2.14 inches and for the hexagon 6 inches
Answer:
- D(5, 4), E(14, 7), M(9.5, 5.5)
Step-by-step explanation:
As AD = 1/4AB and DE ║ AC, the ratio CE/CB = 1/4, or CE = 1/4CB
<u>Find the coordinates of D:</u>
- x = 1 + 1/4(17 - 1) = 1 + 4 = 5
- y = 5 + 1/4(1 - 5) = 5 - 1 = 4
<u>Find the coordinates of E:</u>
- x = 13 + 1/4(17 - 13) = 13 + 1 = 14
- y = 9 + 1/4(1 - 9) = 9 - 2 = 7
<u>Find the coordinates of the midpoint M of DE:</u>
- x = (5 + 14)/2 = 19/2 = 9.5
- y = (4 + 7)/2 = 11/2 = 5.5