Answer:
No. The new height of the water is less than the height of the glass(6.33 cm<10 cm)
Step-by-step explanation:
-For the water in the glass to overflow, the volume of the inserted solid must be greater than the volume of the empty space or the ensuing height of water >height of glass.
#Volume of the golf ball:

#The volume of the water in the glass:

We then equate the two volumes to the glass' volume to determine the new height of the water:

Hence, the glass will not overflow since the new height of the water is less than the height of the glass(6.33 cm<10cm).
Recall that to get the x-intercepts, we set the f(x) = y = 0, thus
![\bf \stackrel{f(x)}{0}=-4cos\left(x-\frac{\pi }{2} \right)\implies 0=cos\left(x-\frac{\pi }{2} \right) \\\\\\ cos^{-1}(0)=cos^{-1}\left[ cos\left(x-\frac{\pi }{2} \right) \right]\implies cos^{-1}(0)=x-\cfrac{\pi }{2} \\\\\\ x-\cfrac{\pi }{2}= \begin{cases} \frac{\pi }{2}\\\\ \frac{3\pi }{2} \end{cases}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bf%28x%29%7D%7B0%7D%3D-4cos%5Cleft%28x-%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%20%5Cright%29%5Cimplies%200%3Dcos%5Cleft%28x-%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%20%5Cright%29%0A%5C%5C%5C%5C%5C%5C%0Acos%5E%7B-1%7D%280%29%3Dcos%5E%7B-1%7D%5Cleft%5B%20cos%5Cleft%28x-%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%20%5Cright%29%20%5Cright%5D%5Cimplies%20cos%5E%7B-1%7D%280%29%3Dx-%5Ccfrac%7B%5Cpi%20%7D%7B2%7D%0A%5C%5C%5C%5C%5C%5C%0Ax-%5Ccfrac%7B%5Cpi%20%7D%7B2%7D%3D%0A%5Cbegin%7Bcases%7D%0A%5Cfrac%7B%5Cpi%20%7D%7B2%7D%5C%5C%5C%5C%0A%5Cfrac%7B3%5Cpi%20%7D%7B2%7D%0A%5Cend%7Bcases%7D)
The volume of the prism is calculated by multiplying the length, L, width,W, and depth or height, H.
V = L x W x H
Fish tank:
V = 50 cm x 25 cm x 25 cm
= 31250 cm³
Depth of the water in tank (with castle - without castle)
d = 57.5 cm - 48 cm = 9.5 cm
Volume of the caste:
V = 9.5 cm x 50 cm x 25 cm = 11875 cm³
-2.38 is the answer because 7x-3.4=x/10=-2.38