Answer:
a) P(X∩Y) = 0.2
b)
= 0.16
c) P = 0.47
Step-by-step explanation:
Let's call X the event that the motorist must stop at the first signal and Y the event that the motorist must stop at the second signal.
So, P(X) = 0.36, P(Y) = 0.51 and P(X∪Y) = 0.67
Then, the probability P(X∩Y) that the motorist must stop at both signal can be calculated as:
P(X∩Y) = P(X) + P(Y) - P(X∪Y)
P(X∩Y) = 0.36 + 0.51 - 0.67
P(X∩Y) = 0.2
On the other hand, the probability
that he must stop at the first signal but not at the second one can be calculated as:
= P(X) - P(X∩Y)
= 0.36 - 0.2 = 0.16
At the same way, the probability
that he must stop at the second signal but not at the first one can be calculated as:
= P(Y) - P(X∩Y)
= 0.51 - 0.2 = 0.31
So, the probability that he must stop at exactly one signal is:

Answer:
t=2
Step-by-step explanation:
this is the t answer k
“Times as fast” means you need to multiply the original speed (10^11) by how many times faster the faster processor works:
10^11 instructions/second • 10^3 faster = 10^14 instructions/second
The key is “___ times as fast”.
Full turn = 360 degrees
2/3 of a full turn.
So 1/3 of a turn is 120 degrees
Since it’s 2/3, you add another 120 to make 240