Base case: if <em>n</em> = 1, then
1² - 1 = 0
which is even.
Induction hypothesis: assume the statement is true for <em>n</em> = <em>k</em>, namely that <em>k</em> ² - <em>k</em> is even. This means that <em>k</em> ² - <em>k</em> = 2<em>m</em> for some integer <em>m</em>.
Induction step: show that the assumption implies (<em>k</em> + 1)² - (<em>k</em> + 1) is also even. We have
(<em>k</em> + 1)² - (<em>k</em> + 1) = <em>k</em> ² + 2<em>k</em> + 1 - <em>k</em> - 1
… = (<em>k</em> ² - <em>k</em>) + 2<em>k</em>
… = 2<em>m</em> + 2<em>k</em>
… = 2 (<em>m</em> + <em>k</em>)
which is clearly even. QED
G is the same function
Using the 2nd function
g(2) = 8 - g(2-1)
g(2) = 8 - g(1) (g(1)=50 )
So, g(2)= 8-50
g(2) = -42
Answer: 2.54
Step-by-step explanation:
Answer:
x=1
Step-by-step explanation:
12x -3 + x =5x - 4 +8x +1
13x-3=13x - 3
+3 +3
____________-
13x=13x
÷13x ÷13x
_________
x=1
Hope this helps :D (idk if its right srry if not)