Answer:
Simplify above fraction
56
6
Common divisor of (56, 6) is 2
Divide both numerator & denominator by gcd value 2
56
6
=
56
÷
2
6
÷
2
=
28
3
8
3
×
7
2
=
28
3
Step-by-step explanation:
The answer will be 27 only.
The solution to the system of equations x + 2y = 1 and -3x-2y = 5 is:
x = -3, y = 2
The given system of equations:
x + 2y = 1............(1)
-3x - 2y = 5..........(2)
This can be written in matrix form as shown:
![\left[\begin{array}{ccc}1&2\\-3&-2\end{array}\right] \left[\begin{array}{ccc}x\\y\end{array}\right] = \left[\begin{array}{ccc}1\\5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%5C%5C-3%26-2%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C5%5Cend%7Barray%7D%5Cright%5D)
Find the determinant of ![\left[\begin{array}{ccc}1&2\\-3&-2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%5C%5C-3%26-2%5Cend%7Barray%7D%5Cright%5D)

![\triangle_x = \left[\begin{array}{ccc}1&2\\5&-2\end{array}\right]\\\triangle_x = 1(-2)-2(5)\\\triangle_x = -2-10\\\triangle_x =-12](https://tex.z-dn.net/?f=%5Ctriangle_x%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%5C%5C5%26-2%5Cend%7Barray%7D%5Cright%5D%5C%5C%5Ctriangle_x%20%3D%201%28-2%29-2%285%29%5C%5C%5Ctriangle_x%20%3D%20-2-10%5C%5C%5Ctriangle_x%20%3D-12)
![\triangle_y = \left[\begin{array}{ccc}1&1\\-3&5\end{array}\right]\\\triangle_y = 1(5)-1(-3)\\\triangle_y = 5 + 3\\\triangle_y =8](https://tex.z-dn.net/?f=%5Ctriangle_y%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%5C%5C-3%265%5Cend%7Barray%7D%5Cright%5D%5C%5C%5Ctriangle_y%20%3D%201%285%29-1%28-3%29%5C%5C%5Ctriangle_y%20%3D%205%20%2B%203%5C%5C%5Ctriangle_y%20%3D8)


The solution to the system of equations x + 2y = 1 and -3x-2y = 5 is:
x = -3, y = 2
Learn more here: brainly.com/question/4428059
Answer:
The slope of the line would be undefined
Step-by-step explanation:
First you take the y of the second point and subtract it from the y of the first point. -11 - 4. That leaves you with -15. Then you take the x of the second point and subtract it from the x of the first point. that leaves you with 0. Then you put y over x. You then have -1`5/0. That is undefined.
Although the number of new wildflowers is decreasing, the total number of flowers is increasing every year (assuming flowers aren't dying or otherwise being removed). Every year, 25% of the number of new flowers from the previous year are added.
The sigma notation would be:
∑ (from n=1 to ∞) 4800 * (1/4)ⁿ , where n is the year.
Remember that this notation should give us the sum of all new flowers from year 1 to infinite, and the values of new flowers for each year should match those given in the table for years 1, 2, and 3
This means the total number of flowers equals:
Year 1: 4800 * 1/4 = 1200 ]
+
Year 2: 4800 * (1/4)² = 300
+
Year 3: 4800 * (1/4)³ = 75
+
Year 4: 4800 * (1/4)⁴ = 18.75 = ~19 (we can't have a part of a flower)
+
Year 5: 4800 * (1/4)⁵ = 4.68 = ~ 5
+
Year 6: 4800 * (1/4)⁶ = 1.17 = ~1
And so on. As you can see, it in the years that follow the number of flowers added approaches zero. Thus, we can approximate the infinite sum of new flowers using just Years 1-6:
1200 + 300 + 75 + 19 + 5 + 1 = 1,600