Hello from MrBillDoesMath!
Answer:
Top line: y = (2/3)x + 2
Bottom line: y = (2/3)x -1
Discussion:
The graph provided is hard to read but I did the best I could.
The top line appears to pass through the points (0,2) and (-3,0)
For this line
m = change y /change x = (0-2)/(-3-0) = -2/-3 = +2/3. So
y = mx + b => y = (2/3) x+ b. As the line passes through (0,2) set x = 0, y= 2 in y = (2/3)x + b =>
2 = (2/3) 0 + b => b = 2
Therefore y = (2/3)x + 2
The bottom line appears to pass through the points (0,-1) and (3,1)
For this line
m = change y /change x = (1-(-1)) /(3-0) = +2/-3. So
y = mx + b => y = (2/3) x+ b. As the line passes through (0,-1) set x = 0, y= -1 in y = (2/3)x + b =>
-1 = (2/3) 0 + b => b = -1
Therefore y = (2/3)x + -1
Thank you,
MrB
Answer:
- 892 lb (right)
- 653 lb (left)
Step-by-step explanation:
The weight is in equilibrium, so the net force on it is zero. If R and L represent the tensions in the Right and Left cables, respectively ...
Rcos(45°) +Lcos(75°) = 800
Rsin(45°) -Lsin(75°) = 0
Solving these equations by Cramer's Rule, we get ...
R = 800sin(75°)/(cos(75°)sin(45°) +cos(45°)sin(75°))
= 800sin(75°)/sin(120°) ≈ 892 . . . pounds
L = 800sin(45°)/sin(120°) ≈ 653 . . . pounds
The tension in the right cable is about 892 pounds; about 653 pounds in the left cable.
_____
This suggests a really simple generic solution. For angle α on the right and β on the left and weight w, the tensions (right, left) are ...
(right, left) = w/sin(α+β)×(sin(β), sin(α))
First, find the product (w*r)(x): (w*r)(x) = (x-2)*[2-x^2] = 2x - x^3 - 4 + 2x^2
This is a cubing function. Since the sign of the cube-of-x term is negative, the graph will begin in Quadrant II and pass through Quadrant IV. There are no limits on y. Thus, the range is (-infinity, +infinity).
Answer:
thanks:)
Step-by-step explanation:
hehe
value of y which satisfies equation
is
.
<u>Step-by-step explanation:</u>
We have , 3y+8=7y+11 . We need to find which value of y satisfies this equation 3y+8=7y+11 :

⇒ 
⇒ 
⇒ 
⇒ 
⇒ 
⇒ 
⇒ 
⇒ 
Therefore, value of y which satisfies equation
is
.