The answer is h(2k - 5) = -4 - 2k
Step-by-step explanation:
In a function f(x) = y, we can find the value of y for any given value of x
Examples:
- If f(x) = 2x - 3, and we need to find f(3), that means substitute x by 3 in f(x), so f(3) = 2(3) - 3 = 6 - 3 = 3, that means f(x) = 3 at x = 3
- If f(x) = 8 - 5x, and we need to find f(a - 2), substitute x by (a - 2) in f(x), so f(a - 2) = 8 - 5(a - 2) = 8 - 5a + 10 = 18 - 5a, that means f(a - 2) = 18 - 5a at x = a - 2
∵ h(x) = -9 - x
- We need to find h(2k - 5), that means substitute x by 2k - 5
∵ x = 2k - 5
∴ h(2k - 5) = -9 - (2k - 5)
- Simplify the right hand side
∴ h(2k - 5) = -9 - 2k - (-5)
- Remember (-)(-) = (+)
∴ h(2k - 5) = -9 - 2k + 5
- Add the like terms in the right hand side
∴ h(2k - 5) = (-9 + 5) - 2k
∴ h(2k - 5) = -4 - 2k
The answer is h(2k - 5) = -4 - 2k
Learn more:
You can learn ore about the functions in brainly.com/question/5337932
#LearnwithBrainly
Answer:
D. 77 + 8
Step-by-step explanation:
7 x 8 = 56
now try the other problems
A. 6 x 8 = 48
B. 6 x 7 = 42
C. 7 x 7 = 49
D. 77 + 8 = 56
D is the answer
Answer:

g(t) = 0
And
The differential equation
is linear and homogeneous
Step-by-step explanation:
Given that,
The differential equation is -

![e^{t}y' + (9t - \frac{1}{t^{2} + 81 } )y = 0\\e^{t}y' + (\frac{9t(t^{2} + 81 ) - 1}{t^{2} + 81 } )y = 0\\e^{t}y' + (\frac{9t^{3} + 729t - 1}{t^{2} + 81 } )y = 0\\y' + [\frac{9t^{3} + 729t - 1}{e^{t}(t^{2} + 81) } ]y = 0](https://tex.z-dn.net/?f=e%5E%7Bt%7Dy%27%20%2B%20%289t%20-%20%5Cfrac%7B1%7D%7Bt%5E%7B2%7D%20%2B%2081%20%7D%20%29y%20%3D%200%5C%5Ce%5E%7Bt%7Dy%27%20%2B%20%28%5Cfrac%7B9t%28t%5E%7B2%7D%20%2B%2081%20%29%20-%201%7D%7Bt%5E%7B2%7D%20%2B%2081%20%7D%20%29y%20%3D%200%5C%5Ce%5E%7Bt%7Dy%27%20%2B%20%28%5Cfrac%7B9t%5E%7B3%7D%20%2B%20729t%20%20-%201%7D%7Bt%5E%7B2%7D%20%2B%2081%20%7D%20%29y%20%3D%200%5C%5Cy%27%20%2B%20%5B%5Cfrac%7B9t%5E%7B3%7D%20%2B%20729t%20%20-%201%7D%7Be%5E%7Bt%7D%28t%5E%7B2%7D%20%2B%2081%29%20%7D%20%5Dy%20%3D%200)
By comparing with y′+p(t)y=g(t), we get

g(t) = 0
And
The differential equation
is linear and homogeneous.
Answer:
Is the answer B?
Step-by-step explanation:
According to my calculations it should be 77