1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
8_murik_8 [283]
3 years ago
7

Which pair of equations are examples of inverse operations

Mathematics
1 answer:
Ann [662]3 years ago
8 0
The picture is too small, but which equations can undo each other?
Addition and Subtraction is Inverse Operations
Multiplication and Division is Inverse Operations
You might be interested in
Prove: An even plus an even is<br> an even<br> 2n + 2m = [? ](n + m)<br> = even
KonstantinChe [14]

Answer:

2(n + m)

Step-by-step explanation:

3 0
3 years ago
A parking garage charges $5.50 to park for 4 hours and $7.75 to park for 7 hours. If the cost is a linear function of the number
Veseljchak [2.6K]
Given:
hours     parking charge
4                 5.50
7                 7.75

7 - 4 = 3 hours
7.75 - 5.50 = 2.25

2.25 / 3 = 0.75

0.75 is the change in amount for every hour spent. It is the variable unit rate

4 hours is 5.50.

Cost of parking for 3 hours is: 5.50 - 0.75 = 4.75

0.75 x 4 hours = 3 
5.50 - 3 = 2.5 fixed charge.

total parking charge:  y = 2.50 + 0.75x
5 0
3 years ago
Read 2 more answers
Using Laplace transforms, solve x" + 4x' + 6x = 1- e^t with the following initial conditions: x(0) = x'(0) = 1.
professor190 [17]

Answer:

The solution to the differential equation is

X(s)=\cfrac 1{6}  -\cfrac {1}{11}e^{t}+\cfrac {61}{66}e^{-2t}\cos(\sqrt 2t)+\cfrac {97}{66}\sqrt 2 e^{-2t}\sin(\sqrt 2t)

Step-by-step explanation:

Applying Laplace Transform will help us solve differential equations in Algebraic ways to find particular  solutions, thus after applying Laplace transform and evaluating at the initial conditions we need to solve and apply Inverse Laplace transform to find the final answer.

Applying Laplace Transform

We can start applying Laplace at the given ODE

x''(t)+4x'(t)+6x(t)=1-e^t

So we will get

s^2 X(s)-sx(0)-x'(0)+4(sX(s)-x(0))+6X(s)=\cfrac 1s -\cfrac1{s-1}

Applying initial conditions and solving for X(s).

If we apply the initial conditions we get

s^2 X(s)-s-1+4(sX(s)-1)+6X(s)=\cfrac 1s -\cfrac1{s-1}

Simplifying

s^2 X(s)-s-1+4sX(s)-4+6X(s)=\cfrac 1s -\cfrac1{s-1}

s^2 X(s)-s-5+4sX(s)+6X(s)=\cfrac 1s -\cfrac1{s-1}

Moving all terms that do not have X(s) to the other side

s^2 X(s)+4sX(s)+6X(s)=\cfrac 1s -\cfrac1{s-1}+s+5

Factoring X(s) and moving the rest to the other side.

X(s)(s^2 +4s+6)=\cfrac 1s -\cfrac1{s-1}+s+5

X(s)=\cfrac 1{s(s^2 +4s+6)} -\cfrac1{(s-1)(s^2 +4s+6)}+\cfrac {s+5}{s^2 +4s+6}

Partial fraction decomposition method.

In order to apply Inverse Laplace Transform, we need to separate the fractions into the simplest form, so we can apply partial fraction decomposition to the first 2 fractions. For the first one we have

\cfrac 1{s(s^2 +4s+6)}=\cfrac As + \cfrac {Bs+C}{s^2+4s+6}

So if we multiply both sides by the entire denominator we get

1=A(s^2+4s+6) +  (Bs+C)s

At this point we can find the value of A fast if we plug s = 0, so we get

1=A(6)+0

So the value of A is

A = \cfrac 16

We can replace that on the previous equation and multiply all terms by 6

1=\cfrac 16(s^2+4s+6) +  (Bs+C)s

6=s^2+4s+6 +  6Bs^2+6Cs

We can simplify a bit

-s^2-4s=  6Bs^2+6Cs

And by comparing coefficients we can tell the values of B and C

-1= 6B\\B=-1/6\\-4=6C\\C=-4/6

So the separated fraction will be

\cfrac 1{s(s^2 +4s+6)}=\cfrac 1{6s} +\cfrac {-s/6-4/6}{s^2+4s+6}

We can repeat the process for the second fraction.

\cfrac1{(s-1)(s^2 +4s+6)}=\cfrac A{s-1} + \cfrac {Bs+C}{s^2+4s+6}

Multiplying by the entire denominator give us

1=A(s^2+4s+6) + (Bs+C)(s-1)

We can plug the value of s = 1 to find A fast.

1=A(11) + 0

So we get

A = \cfrac1{11}

We can replace that on the previous equation and multiply all terms by 11

1=\cfrac 1{11}(s^2+4s+6) + (Bs+C)(s-1)

11=s^2+4s+6 + 11Bs^2+11Cs-11Bs-11C

Simplifying

-s^2-4s+5= 11Bs^2+11Cs-11Bs-11C

And by comparing coefficients we can tell the values of B and C.

-s^2-4s+5= 11Bs^2+11Cs-11Bs-11C\\-1=11B\\B=-\cfrac{1}{11}\\5=-11C\\C=-\cfrac{5}{11}

So the separated fraction will be

\cfrac1{(s-1)(s^2 +4s+6)}=\cfrac {1/11}{s-1} + \cfrac {-s/11-5/11}{s^2+4s+6}

So far replacing both expanded fractions on the solution

X(s)=\cfrac 1{6s} +\cfrac {-s/6-4/6}{s^2+4s+6} -\cfrac {1/11}{s-1} -\cfrac {-s/11-5/11}{s^2+4s+6}+\cfrac {s+5}{s^2 +4s+6}

We can combine the fractions with the same denominator

X(s)=\cfrac 1{6s}  -\cfrac {1/11}{s-1}+\cfrac {-s/6-4/6+s/11+5/11+s+5}{s^2 +4s+6}

Simplifying give us

X(s)=\cfrac 1{6s}  -\cfrac {1/11}{s-1}+\cfrac {61s/66+158/33}{s^2 +4s+6}

Completing the square

One last step before applying the Inverse Laplace transform is to factor the denominators using completing the square procedure for this case, so we will have

s^2+4s+6 = s^2 +4s+4-4+6

We are adding half of the middle term but squared, so the first 3 terms become the perfect  square, that is

=(s+2)^2+2

So we get

X(s)=\cfrac 1{6s}  -\cfrac {1/11}{s-1}+\cfrac {61s/66+158/33}{(s+2)^2 +(\sqrt 2)^2}

Notice that the denominator has (s+2) inside a square we need to match that on the numerator so we can add and subtract 2

X(s)=\cfrac 1{6s}  -\cfrac {1/11}{s-1}+\cfrac {61(s+2-2)/66+316 /66}{(s+2)^2 +(\sqrt 2)^2}\\X(s)=\cfrac 1{6s}  -\cfrac {1/11}{s-1}+\cfrac {61(s+2)/66+194 /66}{(s+2)^2 +(\sqrt 2)^2}

Lastly we can split the fraction one more

X(s)=\cfrac 1{6s}  -\cfrac {1/11}{s-1}+\cfrac {61(s+2)/66}{(s+2)^2 +(\sqrt 2)^2}+\cfrac {194 /66}{(s+2)^2 +(\sqrt 2)^2}

Applying Inverse Laplace Transform.

Since all terms are ready we can apply Inverse Laplace transform directly to each term and we will get

\boxed{X(s)=\cfrac 1{6}  -\cfrac {1}{11}e^{t}+\cfrac {61}{66}e^{-2t}\cos(\sqrt 2t)+\cfrac {97}{66}\sqrt 2 e^{-2t}\sin(\sqrt 2t)}

6 0
4 years ago
MATH HOMEWORKKKKKKKKKKKKKKKKKKKKKKKK
BaLLatris [955]
20.9984 rounded = 21
6 0
3 years ago
Nine people share 6 cookies equally what fraction of a cookie does each person get?
maw [93]
1.5 is the answer I think
6 0
3 years ago
Read 2 more answers
Other questions:
  • Which function represents a reflection of f(x) = (2)x over the x-axis?
    12·1 answer
  • A family of 2 adults and 1 child plans to spend the day at the baytown zoo . how much does administration for the family cost ex
    6·1 answer
  • PLZ HELP ME I NEED HELP
    6·1 answer
  • Which relation is a function?
    12·1 answer
  • Collaborate triangle
    8·1 answer
  • NO LINKS OR ELSE YOU'LL BE REPORTED! Only answer if you're very good at Math.No guessing please.
    11·1 answer
  • Help me out, math is irritating
    6·1 answer
  • What is 3 1/4 - (-5/8)
    15·1 answer
  • PLA
    7·1 answer
  • -2x-9y=25 4x+9y=23 solve with elimination
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!