The volume would be 8ft because the formula for volume is length x width x height. Since they are all 2ft the formula would be 2ft x 2ft x 2ft.
Your equation would be like this:
y=11x+300
because 11 depends on 'X" how many miles he walks and then just add 300 to that because that is the fixed amount
I hope I've helped!
According with the definition of translation, we conclude that the equations of graphs M and N are m(x) = f(x - 5) and n(x) = f(x) - 2, respectively.
<h3>How to apply translations on a given function</h3>
<em>Rigid</em> transformations are transformation such that the <em>Euclidean</em> distance of every point of a function is conserved. Translations are a kind of <em>rigid</em> transformations and there are two basic forms of translations:
Horizontal translation
g(x) = f(x - k), k ∈
(1)
Where the translation goes <em>rightwards</em> for k > 0.
Vertical translation
g(x) = f(x) + k, k ∈
(2)
Where the translation goes <em>upwards</em> for k > 0.
According with the definition of translation, we conclude that the equations of graphs M and N are m(x) = f(x - 5) and n(x) = f(x) - 2, respectively.
To learn more on translations: brainly.com/question/17485121
#SPJ1
Step-by-step explanation:
sorry but i need points Thank you
Answer:
e. The probability of observing a sample mean of 5.11 or less, or of 5.29 or more, is 0.018 if the true mean is 5.2.
Step-by-step explanation:
We have a two-tailed one sample t-test.
The null hypothesis claims that the pH is not significantly different from 5.2.
The alternative hypothesis is that the mean pH is significantly different from 5.2.
The sample mean pH is 5.11, with a sample size of n=50.
The P-value of the test is 0.018.
This P-value corresponds to the probability of observing a sample mean of 5.11 or less, given that the population is defined by the null hypothesis (mean=5.2).
As this test is two-tailed, it also includes the probability of the other tail. That is the probability of observing a sample with mean 5.29 or more (0.09 or more from the population mean).
Then, we can say that, if the true mean is 5.2, there is a probability P=0.018 of observing a sample of size n=50 with a sample mean with a difference bigger than 0.09 from the population mean of the null hypothesis (5.11 or less or 5.29 or more).
The right answer is e.