Step-by-step explanation:
-2a + x
Putting values of a = - 2 and x = 7
-2(-2) + 7
4 + 7
= 11
Answer:
Rayshawn originally had $30.
Step-by-step explanation:
i) Rayshawn has a certain amount of money. Let us say this amount is $x.
ii) Rayshawn spends $20 which means that he is left with $(x - 20)
iii) it is also given that amount of money left after spending $20 is
of the original amount, $x, the amount remaining is
.
iv) from the information given in ii) and iii) we get
$(x - 20) =
, Therefore we get 3x - 60 = x , therefore 2x = 60,
Therefore x = $30. Rayshawn originally had $30.
Answer:
119 maybe, not completely sure
Step-by-step explanation:
I think 119
Let the lengths of the east and west sides be x and the lengths of the north and south sides be y. the dimensions you want are therefore x and y.
The cost of the east and west fencing is $4*2*x; the cost of the north and south fencing is $2*2*y. We have to put in that "2" because there are 2 sides that run from east to west and 2 sides that run from north to south.
The total cost of all this fencing is $4(2)(x) + $2(2)(y) = $128. Let's reduce this by dividing all three terms by 4: 2x + y = 32.
Now we are to maximize the area of the vegetable patch, subject to the constraint that 2x + y = 32. The formula for area is A = L * W. Solving 2x + y = 32 for y, we get y = -2x + 32.
We can now eliminate y. The area of the patch is (x)(-2x+32) = A. We want to maximize A.
If you're in algebra, find the x-coordinate of the vertex of this quadratic equation. Remember the formula x = -b/(2a)? Once you have calculated this x, subst. your value into the formula for y: y= -2x + 32.
Now multiply together your x and y values to obtain the max area of the patch.
If you're in calculus, differentiate A = x(-2x+32) with respect to x and set the derivative equal to zero. This approach should give you the same x value as before; the corresponding y value will be the same; y=-2x+32.
Multiply x and y together. That'll give you the maximum possible area of the garden patch.
Can we get a picture or something?