Answer:
8
Step-by-step explanation:
Reflection across the line y= -x,
(x, y) —-> (-y, -x)
so, C’ will be (-1, 3), B’ will be (3, 2), and A’ will be (2, -6)
Given:
The equation of a circle is

A tangent line l to the circle touches the circle at point P(12,5).
To find:
The gradient of the line l.
Solution:
Slope formula: If a line passes through two points, then the slope of the line is

Endpoints of the radius are O(0,0) and P(12,5). So, the slope of radius is


We know that, the radius of a circle is always perpendicular to the tangent at the point of tangency.
Product of slopes of two perpendicular lines is always -1.
Let the slope of tangent line l is m. Then, the product of slopes of line l and radius is -1.



Therefore, the gradient or slope of the tangent line l is
.
Unfortunately your response would only be true if CD was perpendicular to AB. However we don't know if CD is perpendicular or not. So we don't have enough information. The actual answer is choice E) None of these.