Answer:
459.126 grams of calcium chloride is needed to prepare 2.657 L of a 1.56 M solution
Explanation:
Molarity is a measure of the concentration of a solute in a solution that indicates the amount of moles of solute that appear dissolved in one liter of the mixture. In other words, molarity is the number of moles of solute that are dissolved in a given volume.
The Molarity of a solution is determined by the following expression:

Molarity is expressed in units 
In this case:
- Molarity: 1.56 M= 1.56

- Number of moles of calcium chlorine= ?
- Volume= 2.657 liters
Replacing:

Solving:
Number of moles of calcium chlorine= 1.56 M* 2.657 liters
Number of moles of calcium chlorine= 4.14 moles
In other side, you know:
- Ca: 40 g/mole
- Cl: 35.45 g/mole
Then the molar mass of the calcium chloride CaCl₂ is:
CaCl₂= 40 g/mole + 2* 35.45 g/mole= 110.9 g/mole
Now it is possible to apply the following rule of three: if in 1 mole there is 110.9 g of CaCl₂, in 4.14 moles of the compound how much mass is there?

mass= 459.126 g
<u><em>459.126 grams of calcium chloride is needed to prepare 2.657 L of a 1.56 M solution</em></u>
Answer:
Explanation:
1 mol of methane = 6.02 * 10^23 molecules
6.70 mol of methane = x
Cross multiply
x = 6.70 * 6.02 * 10^23
x = 4.033 * 10^23 molecules.
The question is incomplete, here is the complete question:
Silicon reacts with carbon dioxide to form silicon carbide and silicon dioxide. Write the balanced chemical equation.
<u>Answer:</u> The balanced chemical equation is written below.
<u>Explanation:</u>
Every balanced chemical equation follows law of conservation of mass.
A balanced chemical equation is defined as the equation in which total number of individual atoms on the reactant side is equal to the total number of individual atoms on product side.
The balanced chemical equation for the reaction of silicon and carbon dioxide follows:

By Stoichiometry of the reaction:
2 moles of silicon reacts with 1 mole of carbon dioxide gas to produce 1 mole of silicon carbide and 1 mole of silicon dioxide
Hence, the balanced chemical equation is written above.
Answer:
By bonding due to the attractive forces
It is fresher because of new transportation techniques and refrigerated trailers.