Answer:
Option c, Two atomic orbitals combine to form one molecular orbital
Explanation:
Molecular orbitals are formed by linear combination of atomic orbitals.
Some of the important facts of molecular orbital theories are as follows:
- No. of the molecular orbitals formed are equal to the no. of atomic orbitals participated.
- Half of the molecular orbitals are bonding molecular orbitals and half of the molecular orbitals are anti bonding molecular orbitals.
- Anti bonding molecular orbitals have energy higher than participating atomic orbitals.
- Bonding molecular orbitals have energy lower than participating atomic orbitals.
- Molecular orbitals are that region in the molecule where electrons are most likely to found.
So, among given, option c which is 'atomic orbitals combine to form one molecular orbital' is incorrect.
Search Results
Featured snippet from the web
A green shirt looks green because light reflects off of the green shirt. ... Visible light on the electromagnetic spectrum is found in between infrared waves and ultraviolet waves.
Answer:
check it below
Explanation:
NaCl; Sodium Chloride is an ionic compound formed by sodium and Chlorine.
Ionic bond is very strong, It can't be separated back to sodium and chlorine just by physical change. Chemicals which are more reactive can displace ions, thus seperate it
This is a incomplete question. The complete question is:
It takes 348 kJ/mol to break a carbon-carbon single bond. Calculate the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon. Round your answer to correct number of significant digits
Answer: 344 nm
Explanation:
E= energy = 348kJ= 348000 J (1kJ=1000J)
N = avogadro's number = 
h = Planck's constant = 
c = speed of light = 

Thus the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon is 344 nm