Answer:nitrogen fixation i think
Explanation:
Answer:
THE MOLAR MASS OF THE GAS IS 147.78 G/MOLE
Explanation:
Using PV = nRT
n = Mass / molar mass
P = 732.6 mmHg = 1 atm = 760 mmHg
So therefore 732.6 mmHg will be equal to 732.6 / 760 = 0.964 atm
P = 0.964 atm
V = 275 mL = 275 *10 ^-3 L
R = 0.082 Latm/ mol K
T = -28 C = 273 - 28 K = 245 K
mass = 1.95 g
molar mass = unknown
Having known the other variables in the formula, the molar mass of the gas can be obtained.
PV = m R T/ molar mass
Molar mass = m RT / PV
Molar mass = 1.95 * 0.082 * 245 / 0.964 * 275 *10^-3
Molar mass = 39.1755 / 265.1 *10^-3
Molar mass = 39.1755 / 0.2651
Molar mass = 147.78 g/mol
The molar mass of the gas is 147.78 g/mol
<h2>Answer:</h2>
The compound is known as the neurotransmitter or messenger chemicals.
<h3>Explanation:</h3>
- Neurotransmitters are the chemicals a type of messenger which is used to transmit information from one cell to the next cell.
- Some hormones are also known as messenger chemicals.
- The nerve cells are not linked to each other while they are separated from each other by a space known as synapses.
- The electric potential signal is converted into chemical signal by the release of neurotransmitters.
- These neurotransmitter signal next cell to produce equal amount of electric signal in nerve cell.
Answer:
Bind to the protein complex troponin.
Explanation:
Excitation of skeletal muscle caused by the calcium ions. During excitation of skeletal muscle, after calcium ions released into the cytosol, they bind to the protein complex known as troponin and causing substitutions in the protein complex.
These alterations permit protein to push out from the myosin-binding sites on the actin filament.
Missing question:
Suppose Gabor, a scuba diver, is at a depth of 15 m. Assume that:
1. The air pressure in his air tract is the same as the net water pressure at this depth. This prevents water from coming in through his nose.
2. The temperature of the air is constant (body temperature).
3. The air acts as an ideal gas.
4. Salt water has an average density of around 1.03 g/cm^3, which translates to an increase in pressure of 1.00 atm for every 10.0 m of depth below the surface. Therefore, for example, at 10.0 m, the net pressure is 2.00 atm.
T = 37°C = 310 K.
p₁ = 2,5 atm = 253,313 kPa.
p₂ = 1 atm = 101,325 kPa.
Ideal gas law: p·V = n·R·T.
n₁ = 253,313 kPa · 6 L ÷ 8,31 J/mol·K · 310 K.
n₁ = 0,589 mol.
n₂ = 101,325 kPa · 6 L ÷ 8,31 J/mol·K · 310 K.
n₂ = 0,2356 mol.
Δn = 0,589 mol - 0,2356 mol = 0,3534 mol.