Using the kinematic equation ;
vf²=vi²+2ad just rearrange for d;
vf²-vi²=2ad;
(vf²-vi²)/2a=d
Now plug the numbers in.
vf=24.2
vi=0
a=9.81=g
(24.2²-0²)/(2*9.81)=29.8 m.
Answer:
B=μ₀I/2r
Explanation:
Produced magnetic field due to an existing electric field through a coil or conductor can be explained by Biot-Savart Law. Formula for this law is:
dB=(μ₀I/4π.r²)dL
Here,
r=Radius of the loop
I and r are constants with respect to length L.
To convert linear displacement L into angular displacement Ф:
dL=r.dФ
So,
dB=(μ₀I/4π.r²)r.dФ
dB=(μ₀I/4π.r)dФ
Integrating both sides over the circle i.e. from 0 radians to 2π radians (360⁰), while the integration will apply only on dФ as all others are constants.
B=(μ₀I/4πr)(2π-0)
<u>B=(μ₀I/2r)</u>
Answer:
Explanation:
Given that,
Basket ball is drop from height
H=10m
It is dropped on planet mass
And the acceleration due to gravity on Mars is given as
g= 3.7m/s²
Time taken for the ball to reach the ground
Initial velocity of the body is zero
u=0m/s
Using equation of motion: free fall
H = ut + ½gt²
10 = 0•t + ½ × 3.7 ×t²
10 = 0 + 1.85t²
10 = 1.85t²
Then, t² =10/1.85
t² = 5.405
t = √ 5.405
t = 2.325seconds
So the time the ball spend on the air before reaching the ground is 2.325 seconds