Answer:
ΔP = 14.5 Ns
I = 14.5 Ns
ΔF = 5.8 x 10³ N = 5.8 KN
Explanation:
The mass of the ball is given as 0.145 kg in the complete question. So, the change in momentum will be:
ΔP = mv₂ - mv₁
ΔP = m(v₂ - v₁)
where,
ΔP = Change in Momentum = ?
m = mass of ball = 0.145 kg
v₂ = velocity of batted ball = 55.5 m/s
v₁ = velocity of pitched ball = - 44.5 m/s (due to opposite direction)
Therefore,
ΔP = (0.145 kg)(55.5 m/s + 44.5 m/s)
<u>ΔP = 14.5 Ns</u>
The impulse applied to a body is equal to the change in its momentum. Therefore,
Impulse = I = ΔP
<u>I = 14.5 Ns</u>
the average force can be found as:
I = ΔF*t
ΔF = I/t
where,
ΔF = Average Force = ?
t = time of contact = 2.5 ms = 2.5 x 10⁻³ s
Therefore,
ΔF = 14.5 N.s/(2.5 x 10⁻³ s)
<u>ΔF = 5.8 x 10³ N = 5.8 KN</u>
Answer:
Energy= 46.08KJ
Explanation:
Given that the power needed to light each bulb is 32W
We know that Power = 
The energy needed to light one bulb=
Given time = 1minute = 60 seconds
Energy =
=1920J
Therefore energy needed to light one bulb is 1920J
The energy needed to light 24 bulbs =
=46080J=46.08KJ
Answer:
V4=9.197v
Explanation:
Given:
V1= 18v ,V2= 12v ,r1=r5=58ohms ,r2=r6=124ohms , r3=47ohms ,r4= 125ohms
V4= I4R4 = V2/(R4 + R5)×R4
V4= 12×125 /(125 + 58)
V4=1500/183 =9.197v
Answer:
distance difference would a) increase
speed difference would f) stay the same
Explanation:
Let t be the time the 2nd skydiver takes to travel, since the first skydiver jumped first, his time would be t + Δt where Δt represent the duration between the the first skydiver and the 2nd one. Remember that as t progress (increases), Δt remain constant.
Their equations of motion for distance and velocities are




Their difference in distance are therefore:


(As

So as time progress t increases, Δs would also increases, their distance becomes wider with time.
Similarly for their velocity difference


Since g and Δt both are constant, Δv would also remain constant, their difference in velocity remain the same.
This of this in this way: only the DIFFERENCE in speed stay the same, their own individual speed increases at same rate (due to same acceleration g). But the first skydiver is already at a faster speed (because he jumped first) when the 2nd one jumps. The 1st one would travel more distance compare to the 2nd one in a unit of time.