we must do the following:
0
1
2
3
4
5
6
7
8
9
select the major, the minor and the half and add, like this:
![9+0+5+1=15](https://tex.z-dn.net/?f=9%2B0%2B5%2B1%3D15)
therefore:
![7+6+2=15](https://tex.z-dn.net/?f=7%2B6%2B2%3D15)
also:
![\begin{gathered} 8+4+3=15 \\ \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%208%2B4%2B3%3D15%20%5C%5C%20%20%5Cend%7Bgathered%7D)
the groups are:
(9,0,1,5); (7,6,2); (8,4,3)
Since there are two halves in a whole, you can times each number by 2 to get the number of halves it has.
12*2=24
10*2=20
13*2=26
15*2=30
8*2=16
5*2=10
3x + 1 = (x-1)^2
3x + 1 = x^2 - 2x + 1
0 = x^2 -5x
0 = x(x-5)
x = 0,5
Hope this helps!
<span />
Answer:
B. ![(2, -\frac{5}{2})](https://tex.z-dn.net/?f=%20%282%2C%20-%5Cfrac%7B5%7D%7B2%7D%29%20)
Step-by-step explanation:
Given:
(2, 4) and (2, -9)
Required:
Midpoint of the vertical line with the above endpoints
Solution:
Apply the midpoint formula, which is:
![M(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})](https://tex.z-dn.net/?f=%20M%28%5Cfrac%7Bx_1%20%2B%20x_2%7D%7B2%7D%2C%20%5Cfrac%7By_1%20%2B%20y_2%7D%7B2%7D%29%20)
Where,
(2, 4) = (x_1, y_1)
(2, -9) = (x_2, y_2)
Plug in the values into the equation:
![M(\frac{2 + 2}{2}, \frac{4 + (-9)}{2})](https://tex.z-dn.net/?f=%20M%28%5Cfrac%7B2%20%2B%202%7D%7B2%7D%2C%20%5Cfrac%7B4%20%2B%20%28-9%29%7D%7B2%7D%29%20)
![M(\frac{4}{2}, \frac{-5}{2})](https://tex.z-dn.net/?f=%20M%28%5Cfrac%7B4%7D%7B2%7D%2C%20%5Cfrac%7B-5%7D%7B2%7D%29%20)
![M(2, -\frac{5}{2})](https://tex.z-dn.net/?f=%20M%282%2C%20-%5Cfrac%7B5%7D%7B2%7D%29%20)