Answer:
<em>He bought 6 hotdogs and 2 drinks</em>
Step-by-step explanation:
<u>System of Equations</u>
Kevin and his children went into a restaurant and bought $31.50 worth of hotdogs and drinks. Each hotdog costs $4.50 and each drink costs $2.25.
To solve the system of equations, we'll call the variables:
x = number of hotdogs
y = number of drinks
The first condition yields the equation:
4.50x + 2.25y = 31.50 [1]
It's also known he bought 3 times as many hotdogs as drinks, thus:
x = 3y [2}
Substituting [2] in [1]:
4.50(3y) + 2.25y = 31.50
Operating:
13.5y + 2.25y = 31.50
15.75y = 31.50
y = 31.50/15.75
y = 2
And
x = 3*2 = 6
He bought 6 hotdogs and 2 drinks
Answer:
70
Step-by-step explanation:
Evaluate 3 b^2 - b where b = 5:
3 b^2 - b = 3×5^2 - 5
Hint: | Evaluate 5^2.
5^2 = 25:
3×25 - 5
Hint: | Multiply 3 and 25 together.
3×25 = 75:
75 - 5
Hint: | Subtract 5 from 75.
| 7 | 5
- | | 5
| 7 | 0:
Answer: 70
The way you can get this answer you can use the calculater
5 (2.3) = 11.5
Hope this helps