Answer: Option C)1 over 15 minus 1 over x equals 1 over 20
Explanation:
Since, Micah can fill a box with books in 15 minutes.
Therefore, the work done by Micah in one minute= 1/15
Also, Sydney takes the books out puts them on a shelf.
And the times taken by Micah when Sydney is also taking the books outside from the self= 20 minutes
Therefore, the work done by Micah in one minute when Sydney taking books out of the box= 1/20
Let Sydney alone takes x minutes to take books outsides the shelf.
Then, work done by Sydney in one minute=1/x
Thus, the work done by Sydney( by taking books out of the box)= the work done by Micah - work done by Micah and Sydney simultaneously= 1/15-1/20
⇒1/x=1/15-1/20
⇒1/15-1/20=1/x
⇒1/15-1/x=1/20 is the required expression.
Therefore, Option C is correct.
6.549 million in 2014
i hope this helps.
Follow pemdas. Evaluate operations in parentheses first.
2*(-7)+14-4
Then multiply
-14+14-4
Then add and subtract from left to right
-14+14=0
0-4=-4
Final answer: -4
Step-by-step explanation:
3x + 5y = 21 * (-4) •••••• -12x -20y = -84 (a)
4x - 2y = -24 * (3) •••••• 12x -6y = -72 (b)
(a) + (b)
-26y = -156
y = 6
3x + 5 * 6 = 21
3x = 21 - 30
3x = -9
x = -3
<h3>
Answer:</h3>
System
Solution
- p = m = 5 — 5 lb peanuts and 5 lb mixture
<h3>
Step-by-step explanation:</h3>
(a) Generally, the equations of interest are one that models the total amount of mixture, and one that models the amount of one of the constituents (or the ratio of constituents). Here, there are two constituents and we are given the desired ratio, so three different equations are possible describing the constituents of the mix.
For the total amount of mix:
... p + m = 10
For the quantity of peanuts in the mix:
... p + 0.2m = 0.6·10
For the quantity of almonds in the mix:
... 0.8m = 0.4·10
For the ratio of peanuts to almonds:
... (p +0.2m)/(0.8m) = 0.60/0.40
Any two (2) of these four (4) equations will serve as a system of equations that can be used to solve for the desired quantities. I like the third one because it is a "one-step" equation.
So, your system of equations could be ...
___
(b) Dividing the second equation by 0.8 gives
... m = 5
Using the first equation to find p, we have ...
... p + 5 = 10
... p = 5
5 lb of peanuts and 5 lb of mixture are required.