<u>the correct question is</u>
The denarius was a unit of currency in ancient rome. Suppose it costs the roman government 10 denarii per day to support 4 legionaries and 4 archers. It only costs 5 denarii per day to support 2 legionaries and 2 archers. Use a system of linear equations in two variables. Can we solve for a unique cost for each soldier?
Let
x-------> the cost to support a legionary per day
y-------> the cost to support an archer per day
we know that
4x+4y=10 ---------> equation 1
2x+2y=5 ---------> equation 2
If you multiply equation 1 by 2
2*(2x+2y)=2*5-----------> 4x+4y=10
so
equation 1 and equation 2 are the same
The system has infinite solutions-------> Is a consistent dependent system
therefore
<u>the answer is</u>
We cannot solve for a unique cost for each soldier, because there are infinite solutions.
Answer:
3,500 km
Step-by-step explanation:
Assuming that 1:500000 is meters you would have to convert to kilometers.
7 * 500000 / 1000 = 3500
The answer to this question is 3,3
Answer:

Step-by-step explanation:
x= 1 over 4y-2
Answer:
∛27 = 3
Step-by-step explanation:
A radical is simply a fractional exponent: ![a^{(\frac{m}{n})} = \sqrt[n]{a^{m} }](https://tex.z-dn.net/?f=a%5E%7B%28%5Cfrac%7Bm%7D%7Bn%7D%29%7D%20%3D%20%5Csqrt%5Bn%5D%7Ba%5E%7Bm%7D%20%7D)
Hence, ∛27 = 
Since 27 = 3³, then:
You could rewrite ∛27 as ∛(3)³.
![\sqrt[3]{3^{(3)} } = 3^{[(3)*(\frac{1}{3})]}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B3%5E%7B%283%29%7D%20%7D%20%3D%203%5E%7B%5B%283%29%2A%28%5Cfrac%7B1%7D%7B3%7D%29%5D%7D)
Multiplying the fractional exponents (3 × 1/3) will result in 1 (because 3 is the <u><em>multiplicative inverse</em></u> of 1/3). The multiplicative inverse of a number is defined as a number which when multiplied by the original number gives the product as 1.
Therefore, ∛27 = 3.