I'm sure you already have the answers by now, and thanks for the points! I need it...

6x + 20
Step-by-step explanation:
- <u>To</u><u> </u><u>find</u><u> </u><u>:</u><u>-</u>
Perimeter of rectangle
- <u>Given</u><u> </u><u>:</u><u>-</u>
Length = 2x + 7
Breadth/width = x + 3
- <u>Solution</u><u> </u><u>:</u><u>-</u>
<em>We</em><em> </em><em>know</em><em> </em><em>that</em>
<em>
</em>
<em>Now</em><em> </em><em>we</em><em> </em><em>will</em><em> </em><em>substitute</em><em> </em><em>the</em><em> </em><em>values</em><em> </em><em>of</em><em> </em><em>length</em><em> </em><em>and</em><em> </em><em>breadth</em>
<em>
</em>
Answer:
- WX =

- XY =

- WY =

- Classify: Isosceles
============================================================
Explanation:
Apply the distance formula to find the length of segment WX
W = (x1,y1) = (-10,4)
X = (x2,y2) = (-3, -1)

Segment WX is exactly
units long which approximates to roughly 8.6023253
-------------------
Now let's find the length of segment XY
X = (x1,y1) = (-3, -1)
Y = (x2,y2) = (-5, 11)

Segment XY is exactly
units long which approximates to 12.1655251
-------------------
Lastly, let's find the length of segment WY
W = (x1,y1) = (-10,4)
Y = (x2,y2) = (-5, 11)

We see that segment WY is the same length as WX.
Because we have exactly two sides of the same length, this means triangle WXY is isosceles.