1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Troyanec [42]
4 years ago
10

The bisector of an obtuse angle forms?

Mathematics
2 answers:
Ilia_Sergeevich [38]4 years ago
6 0

Answer:

Acute angles.

Ivan4 years ago
4 0
It forms two acute angles.
You might be interested in
$19.99, $8.99, $35.99, $49.99, $49.99, $39.99, $99.99, $79.99, $35.99, $19.99, $49.99, $29.99, $49.99, $54.99, $35.99, $49.99, $
alexgriva [62]
$34.99,, the middle numbers are $19.99 and $49.99, add them both and divide by 2 = $34.99
8 0
3 years ago
Solve for h. 2h divided by 15 = 20 *
zvonat [6]
H is 2.5 because 2.5 x 2 is 5 and then you do 5 + 15 and you get 20
5 0
3 years ago
Read 2 more answers
18x + 7, when x = 2<br><br><br><br><br><br>​
Ganezh [65]

Answer:

43

Step-by-step explanation:

18x+7

=18×2+7

=36×9

=45

6 0
3 years ago
Read 2 more answers
H(-7)=<br><br> See graph below to help solve.
Alex73 [517]
H(-7)
-h*7
-7h
and the right answer -7h
7 0
3 years ago
The curve C has parametric equations x = t², y = (2 - t)^1/2, for 0 ≤ t ≤2.
S_A_V [24]

Answer:

y''=(4-3t)/[16 t^3 (2-t)^(3/2)]

Step-by-step explanation:

x = t², y = (2 - t)^1/2

dy/dx=dy/dt×dt/dx by chain rule

dy/dt=1/2 (2-t)^(1/2-1) × (-1)

dy/dt=-1/2 (2-t)^(-1/2)

dy/dt=-1/[2(2-t)^(1/2) ]

dx/dt=2t

dy/dx=-1/[2(2-t)^(1/2) ] × 1/[2t]

dy/dx=-1/[4t (2-t)^(1/2) ]

We need to find the second derivative now.

That is we calculate d/dt(dy/dx in terms of t) then divide by derivative of x in terms of t).

dy/dx=-1/[4t (2-t)^(1/2) ]

Let's find derivative of this with respect to t.

d/dt(dy/dx)=

[0[4t (2-t)^(1/2)]-(-1)(4(2-t)^(1/2)+-4t(1/2)(2-t)^(-1/2))]/ [4t (2-t)^(1/2) ]^2

Let's simplify

d/dt(dy/dx)=

[(4(2-t)^(1/2)+-4t(1/2)(2-t)^(-1/2))]/ [4t (2-t)^(1/2) ]^2

Continuing to simplify

Apply the power in the denominator

d/dt(dy/dx)=

[(4(2-t)^(1/2)+-4t(1/2)(2-t)^(-1/2))]/ [16t^2 (2-t) ]

Multiply by (2-t)^(1/2)/(2-t)^(1/2):

d/dt(dy/dx)=

[(4(2-t)+-4t(1/2)]/ [16t^2 (2-t)^(3/2)]

Distribute/multiply:

d/dt(dy/dx)=

[(8-4t+-2t)]/ [16t^2 (2-t)^(3/2)]

Combine like terms:

d/dt(dy/dx)=

[(8-6t)]/ [16t^2 (2-t)^(3/2)]

Reducing fraction by dividing top and bottom by 2:

d/dt(dy/dx)=

[(4-3t)]/ [8t^2 (2-t)^(3/2)]

Now finally the d^2 y/dx^2 in terms of t is

d/dt(dy/dx) ÷ dx/dt=

[(4-3t)]/ [8t^2 (2-t)^(3/2)] ÷ 2t

d/dt(dy/dx) ÷ dx/dt=

[(4-3t)]/ [8t^2 (2-t)^(3/2)] × 1/( 2t)

d/dt(dy/dx) ÷ dx/dt=

[(4-3t)]/ [16t^3 (2-t)^(3/2)]

Or!!!!!!

x = t², y = (2 - t)^1/2

Since t>0, then t=sqrt(x) or x^(1/2).

Make this substitution into the equation explicitly solved for y:

y = (2 - x^1/2)^1/2

Differentiate:

y' =(1/2) (2 - x^1/2)^(-1/2) × -1/2x^(-1/2)

y'=-1/4(2 - x^1/2)^(-1/2)x^(-1/2)

y'=-1/4(2x-x^3/2)^(-1/2)

Differentiate:

y''=1/8(2x-x^3/2)^(-3/2)×(2-3/2x^1/2)

y''=(2-3/2x^1/2)/[8 (2x-x^3/2)^(3/2)]

Replace x with t^2

y''=(2-3/2t)/[8 (2t^2-t^3)^(3/2)]

Multiply top and bottom by 2

y''=(4-3t)/[16 (2t^2-t^3)^(3/2)]

Factor out t^2 inside the 3/2 power factor:

y''=(4-3t)/[16 (t^2)^(3/2) (2-t)^(3/2)]

y''=(4-3t)/[16 t^3 (2-t)^(3/2)]

4 0
3 years ago
Other questions:
  • Part six out of six thx
    9·1 answer
  • How do we graph f(x)=x-7
    9·1 answer
  • The graph of which function will have a maximum and a y-intercept of 4?
    9·2 answers
  • NEED HELP PLZ!<br> Find 4B.
    5·1 answer
  • What is the result of 54×18 written in standard form
    7·1 answer
  • Need help with this final question.
    14·1 answer
  • Mentally solve 93 - 27 in as many ways as you can
    12·2 answers
  • urgent!!!! house has 30 windows. kids playing outside the house 40% of the windows. how many windows are broken?​
    15·1 answer
  • Help me plzzzzzzzzzcdvvebd
    14·1 answer
  • A grab bag contains 2 football cards and 8 basketball cards. An experiment consists of taking one card out of the bag, replacing
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!