Answer:
36 cm²
Step-by-step explanation:
Area of a parallelogram = base x height
So area of parallelogram ABCD = BC x AM
To calculate the length of AM, use Pythagoras' Theorem a² + b² = c²
(where a and b are the legs and c is the hypotenuse of a right-angled triangle).
So using this theorem: BM² + AM² = AB²
⇒ 3² + AM² = 5²
⇒ AM² = 16
⇒ AM = √16 = 4 cm
(positive solution only as length cannot be negative)
Therefore, area of parallelogram ABCD = (3 + 6) x 4 = 9 x 4 = 36 cm²
Answer:
2/8
Step-by-step explanation:
freshman=4/8
1/8 soph 1/8 jr
add all together u get 6/8
the rest is seniors so its 2/8
Answer:
Step-by-step explanation:
p/100* 400=80
*100 *100
400p=8000
:400 :400
p=20
With 5% significant level I think we consider that 22% likes the drink
Answer:
Step-by-step explanation:
1). 3x(2x - 2) = 3x(2x) + 3x(-2) [By distributive property]
2). x²(_ + 5x - 3) = (3)x² + x²(5x) + x²(-3)
3). _(x² - 3x + _) = x(x²) - (x)(-3x) + (x)(2)
4). (2x + 9)(x + 2) = 2x(x + 2) + 9(x + 2)
= 2x² + 4x + 9x + 18
= 2x² + 13x + 18
5). (z - 4)(2z + 1) = z(2z + 1) + (-4)(2z + 1)
= 2z² + z - 8z - 4
= 2z² - 7z - 4
Answer:
=
−
7
3
=
−
7
Step-by-step explanation:
<u>
</u>
<u>=
</u>
<u>−
</u>
<u>
</u>
<u>±
</u>
<u>
</u>
<u>2
</u>
<u>−
</u>
<u>4
</u>
<u>
</u>
<u>
</u>
<u>√
</u>
<u>2
</u>
<u>
</u>
<u>x={b}}^{2}-4{a}}{2{a}}}
</u>
<u>x=2a−b±b2−4ac
</u>
<u>Once in standard form, identify a, b, and c from the original equation and plug them into the quadratic formula.
</u>
<u>3
</u>
<u>
</u>
<u>2
</u>
<u>+
</u>
<u>2
</u>
<u>8
</u>
<u>
</u>
<u>+
</u>
<u>4
</u>
<u>9
</u>
<u>=
</u>
<u>0
</u>
<u>3x^{2}+28x+49=0
</u>
<u>3x2+28x+49=0
</u>
<u>
</u>
<u>=
</u>
<u>3
</u>
<u>a={3}}
</u>
<u>a=3
</u>
<u>
</u>
<u>=
</u>
<u>2
</u>
<u>8
</u>
<u>b={28}}
</u>
<u>b=28
</u>
<u>
</u>
<u>=
</u>
<u>4
</u>
<u>9
</u>
<u>c={129}{49}}
</u>
<u>c=49
</u>
<u>
</u>
<u>=
</u>
<u>−
</u>
<u>2
</u>
<u>8
</u>
<u>±
</u>
<u>2
</u>
<u>8
</u>
<u>2
</u>
<u>−
</u>
<u>4
</u>
<u>⋅
</u>
<u>3
</u>
<u>⋅
</u>
<u>4
</u>
<u>9
</u>
<u>√
</u>
<u>2
</u>
<u>⋅
</u>
<u>3
</u>
<u>=
</u>
<u>−
</u>
<u>2
</u>
<u>8
</u>
<u>±
</u>
<u>1
</u>
<u>4 over
</u>
<u>6
</u>
<u>=
</u>
<u>−
</u>
<u>2
</u>
<u>8
</u>
<u>+
</u>
<u>1
</u>
<u>4
</u>
<u>6
</u>
<u>x={-28+14}{6}
</u>
<u>x=6−28+14
</u>
<u>
</u>
<u>=
</u>
<u>−
</u>
<u>2
</u>
<u>8
</u>
<u>−
</u>
<u>1
</u>
<u>4
</u>
<u>=
</u>
<u>−
</u>
<u>7
</u>
<u>3
</u>
<u>x=-{7}{3}
</u>
<u>x=−37
</u>
<u>
</u>
<u>=
</u>
<u>−
</u>
<u>7
</u>
<u>=
</u>
<u>−
</u>
<u>7
</u>
<u>3
</u>
<u>
</u>
<u>=
</u>
<u>−
</u>
<u>7</u>