Read the question carefully: it costs 4 tokens to park in a garage for an hour.
We will apply the unitary method to solve this question
It costs 4 tokens to park in a garage for 1 hour
Find how many hours can park in a garage for 1 token
If it costs 4 token to park in a garage for 1 hour
Then it will cost 1 token to park in a garage for 1/4 hour
Step2:
With 20 token we can park in a garage for (1/4) * 20
= 5 hours
So, we can park for 5 hours with 20 tokens.
Another method
If we take twenty tokens and divide them into groups of four, we will find that we are left with five groups of tokens. Each group of tokens represents an hour of parking time. This will give us five groups, or five hours, total.
So, we can park for 5 hours with 20 tokens
Answer:
The line in slope-intercept form is y=3/4x-5.25.
Step-by-step explanation:
<span>The number 8.5 is being added. </span>
A "triangle" with the angles 0, 90, and 90 degrees cannot be considered a triangle since the two 90 degree angles make a right angle, and 0 degrees would mean a flat line. Rather it would resemble something like a straight U that is stretched sideways.
Answer: Jeremy drove 84 miles.
Step-by-step explanation:
Let x represent the number of miles that Brenda drove.
If Jeremy drove twice
as far as Brenda, it means that the distance covered by Jeremy would be 2x miles
When they stopped after some time, they were already
126 miles apart. This means that the total distance covered by both of them is 126 miles. Therefore,
x + 2x = 126
3x = 126
x = 126/3
x = 42 miles
The number of miles that Jeremy drove is
42 × 2 = 84 miles