1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tcecarenko [31]
3 years ago
7

A mass of 2000 kg is raised 5.0 m in 10 seconds. What is the power output in horsepower to raise the object?

Physics
1 answer:
Lapatulllka [165]3 years ago
3 0

Answer:

The power output in horsepower to raise the object is, P = 13.14 Hp

Explanation:

Given data,

The mass of the object, m = 2000 kg

The object is raised to a height, h = 5.0 m

The time duration of the work, t = 10 s

The force acting on the mass,

                                      F = mg

                                         = 2000 x 9.8

                                         19600 N

The work done on the object is,

                                     W = F x h

                                         = 19600 x 5

                                         = 98000 J

The rate of doing work is defined as the power. It is given by the formula,

                              P = W / t

                                 = 98000 /10

                                 = 9800 Watts

               1 Hp = 745.7 Watts

Therefore,

                            9800 watts = 13.14 Hp

Hence, the power output in horsepower to raise the object is, P = 13.14 Hp

You might be interested in
To qualify to run in the 2005 Boston Marathon, a distance of 26.2 miles, an 18-year-old woman had to have completed another mara
Korvikt [17]

Answer:

7,14545 mph and 3,1936 m/s

Explanation:

The average speed is calculated by dividing the displacement over time, then it is 26,2 miles/(3 2/3 hours), here 3 (2/3) hours is a mixed number, that represents 11/3 hours or 3,66 hours. Then the average speed is 7,14545 mph, now to turn this into meters per second, we notice as mentioned that 1 mile =1609 meters and 1 hour=3600 seconds. Then 7,14545 miles/hour* (1 hour/3600 seconds) * (1609 meters/1 mile)=3,1936 m/s

3 0
3 years ago
What is E(r)E(r)E(r), the radial component of the electric field between the rod and cylindrical shell as a function of the dist
andriy [413]

Answer:

E(r) = λ/2πrε0

Explanation:

If we consider an infinitely long line of charge with the charge per unit length being λ, we can take advantage of the cylindrical symmetry of this situation.

By symmetry, i mean that the electric fields all point radially away from the line of charge and thus there is no component parallel to the line of charge.

Niw, let's use a cylinder (with an arbitrary radius (r) and length (l)) centred on the line of charge as our Gaussian surface.

Doing that will mean that the electric field would be perpendicular to the curved surface of the cylinder. Therefore, the angle between the electric field and area vector is equal to zero and cos θ = cos 0 = 1

Now, the top and bottom surfaces of the cylinder will lie parallel to the electric field. Therefore, the angle between the area vector and the electric field would be 90° and cos θ = cos 90 = 0

Now, we know that according to Gauss Law,

Electric Flux, Φ = E•dA

Thus,

Total Φ = Φ_curved + Φ_top + Φ_bottom

Thus,

Φ = ∫E•dA cos 0 + ∫E•dA cos 90° + ∫E•dA cos 90°

We now have ;

Φ = ∫E . dA × 1

Since we are dealing with the radial component, the curved surface would be equidistant from the line of charge and the electric field in the surface will be the same magnitude throughout.

Thus,

Φ = ∫E•dA = E∫dA = E•2πrl

The net charge enclosed by the surface is given by:

q_net = λl

So using gauss theorem, we have;

Φ = E•2πrl = q_net/εo = λl/εo

E•2πrl = λl/ε0

Making E the subject, we obtain ;

E = λ/2πrε0

4 0
3 years ago
ILI
Nikolay [14]

The original kinetic energy will be 0 J and the final kinetic energy will be 7500 J and the amount of work utilized will be similar to the final kinetic energy i.e., 7500 J.

<u>Explanation:</u>

As it is known that the kinetic energy is defined as the energy exhibited by the moving objects. So the kinetic energy is equal to the product of mass and square of the velocity attained by the car. Thus,

                  \text {Kinetic energy}=\frac{1}{2} m v^{2}

So the initial kinetic energy will be the energy exerted by the car at the initial state when the initial velocity is zero. Thus the initial kinetic energy will be zero.  

The final kinetic energy is

\text {Kinetic energy}=\frac{1}{2} m v^{2}=\frac{1}{2} \times 600 \times 5 \times 5 = 7500 J

As the work done is the energy required to start the car from zero velocity to 5 m/s velocity.  

                       Work done = Final Kinetic energy - Initial Kinetic energy

Thus the work utilized for moving the car is  

                         Work done = 7500 J - 0 J = 7500 J

Thus, the initial kinetic energy of the car is zero, the final kinetic energy is 7500 J and the work utilized by the car is also 7500 J.

7 0
3 years ago
The objective lens of a microscope has a focal length of 5.5mm. Part A What eyepiece focal length will give the microscope an ov
son4ous [18]

Complete Question

The distance between the objective and eyepiece lenses in a microscope is 19 cm . The objective lens has a focal length of 5.5 mm .

What eyepiece focal length will give the microscope an overall angular magnification of 300?

Answer:

The  eyepiece focal length is  f_e  = 0.027 \ m

Explanation:

From the question we are told that

    The focal length is  f_o =  5.5 \ mm =  -0.0055 \ m

This negative sign shows the the microscope is diverging light

     The  angular magnification is m = 300

     The  distance between the objective and the eyepieces lenses is  Z =  19 \ cm  = 0.19 \ m

Generally the magnification is mathematically represented as

        m  =  [\frac{Z - f_e }{f_e}] [\frac{0.25}{f_0} ]

Where f_e is the eyepiece focal length of the microscope

  Now  making f_e the subject  of the formula

         f_e  = \frac{Z}{1 - [\frac{M  *  f_o }{0.25}] }

substituting values

        f_e  = \frac{ 0.19 }{1 - [\frac{300  *  -0.0055 }{0.25}] }

         f_e  = 0.027 \ m

     

5 0
3 years ago
What is the period of a wave with a frequency of 0.75 Hz?
Wewaii [24]

Answer:

Period = 1.33 seconds

Explanation:

Period = 1/0.75

8 0
3 years ago
Other questions:
  • Name two technologies that people in developing nations could benefit from.
    7·1 answer
  • A small ball of mass m is dropped immediately behind a large one of mass M from a height h mach larger then the size of the ball
    11·1 answer
  • A bag of sugar weighs 2 kg on earth. What should it weigh in newtons on the moon, where the free-fall acceleration is 1/6 that o
    11·1 answer
  • A 0.410 cm diameter plastic sphere, used in a static electricity demonstration, has a uniformly distributed 35.0 pC charge on it
    5·1 answer
  • A car travels 90 km/h. How long does it take for the car to travel
    9·1 answer
  • Please answer ASAP for brainliest
    7·2 answers
  • Please answer the question below. No files, No Docs, or any Link. ONLY REAL ANSWER. Whoever, answers this question will get 50 p
    5·1 answer
  • Which factors describe the motion of an object?
    12·1 answer
  • When driving a Toyota avensis car along a straight road for 16.5km at
    14·1 answer
  • An electric drill rated at 400 W is connected to a 240V power line. How much current does it draw?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!