Answer:
<em>The energy source that powers my home is gotten from burning of fossil fuels.</em>
<em>No! I do not like this energy source.</em>
<em>I personally would prefer solar source of electricity</em>
<em></em>
Explanation:
<em>Fossil fuels are fuels gotten from the decomposition of dead organisms over time, under intense heat and pressure</em>. They are usually found buried beneath the earth's crust where they have been formed and trapped.
Most electricity generating stations generate electricity by burning fossil fuels like natural gas and gasoline to generate electricity. <em>The problem with fossil fuels are the various part that they play in increasing carbon footprints in the atmosphere. The excess carbon in the atmosphere has been a major contributor to the global warming of planet Earth. </em>
My preference for solar energy source is first due to its abundance unlike the fossil fuels that are already diminishing in storage beneath the earth's crust. Also, <em>solar energy is a clean source of energy that does not leave any damage on earth from its use</em>. It also promises to be a cheap source of power in the future with advances in solar technologies.
Look at the first person’s answer. Cause I know I’m wrong
The change in internal energy of the system is +30 J
Explanation:
We can solve this problem by using the first law of thermodynamics, which states that the change in internal energy of a system is given by the equation:

where
is the change in internal energy
Q is the heat absorbed by the system (positive if it is absorbed, negative if it is released)
W is the work done by the system (positive if it is done by the system, negative if it is done by the surroundings on the system)
Therefore, in this problem, we have
(heat released by the system)
(work done on the system)
Therefore, the change in internal energy is

Learn more about thermodynamics:
brainly.com/question/4759369
brainly.com/question/3063912
brainly.com/question/3564634
#LearnwithBrainly
Newton’s first law is commonly stated as:
An object at rest stays at rest and an object in motion stays in motion.
However, this is missing an important element related to forces. We could expand it by stating:
An object at rest stays at rest and an object in motion stays in motion at a constant speed and direction unless acted upon by an unbalanced force.
By the time Newton came along, the prevailing theory of motion—formulated by Aristotle—was nearly two thousand years old. It stated that if an object is moving, some sort of force is required to keep it moving. Unless that moving thing is being pushed or pulled, it will simply slow down or stop. Right?
This, of course, is not true. In the absence of any forces, no force is required to keep an object moving. An object (such as a ball) tossed in the earth’s atmosphere slows down because of air resistance (a force). An object’s velocity will only remain constant in the absence of any forces or if the forces that act on it cancel each other out, i.e. the net force adds up to zero. This is often referred to as equilibrium. The falling ball will reach a terminal velocity (that stays constant) once the force of air resistance equals the force of gravity.
Hope this help
If Earth was twice as far from the sun, the force of gravity attracting the Earth to the sun would be only one-quarter as strong. The correct answer will be C.