1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GaryK [48]
3 years ago
14

How do you put a fraction as a mixed number and a whole number

Mathematics
1 answer:
Jobisdone [24]3 years ago
5 0
If the fraction is more than it is that is a uneave fraction so you can convert it into a mixed nunmber

You might be interested in
Can someone help me with this. I tried to total all them up with 180 but none of the answers i got match the ones from the riddl
Vladimir79 [104]

Answer:

9. x=102

10. x=56

11. x=104

12. x=138

Step-by-step explanation:

9.  In this problem, they are alternate exterior angles, meaning they are the same value.  x=102

10.  x is a corresponding angle, meaning they are the same. x=56

11. There are consecutive interior angles. The sum of these two angles is 180. to find x, subtract 76 from 180.  180-76 = 104  x = 104

12. These two angles are verticle angles, meaning they are equivalent. x = 138

6 0
3 years ago
Evaluate the following polynomial. (32mn2 + 50m2n) - (10mn2 - 16m2n + 64).
zaharov [31]
I think the answer is 22mn2+66m2n-64 since there are no more like terms
7 0
3 years ago
Multiply
Cloud [144]

Answer:

12 x^4 + 18 x^3 - 9 x^2 thus D is the correct answer.

Step-by-step explanation:

Expand the following:

3 x^2 (4 x^2 + 6 x - 3)

3 x^2 (4 x^2 + 6 x - 3) = 3 x^2 (4 x^2) + 3 x^2 (6 x) + 3 x^2 (-3):

3 4 x^2 x^2 + 3 6 x^2 x - 3 3 x^2

3 (-3) = -9:

3 4 x^2 x^2 + 3 6 x^2 x + -9 x^2

3 x^2×6 x = 3 x^(2 + 1)×6:

3 4 x^2 x^2 + 3×6 x^(2 + 1) - 9 x^2

2 + 1 = 3:

3 4 x^2 x^2 + 3 6 x^3 - 9 x^2

3×6 = 18:

3 4 x^2 x^2 + 18 x^3 - 9 x^2

3 x^2×4 x^2 = 3 x^4×4:

3×4 x^4 + 18 x^3 - 9 x^2

3×4 = 12:

Answer:  12 x^4 + 18 x^3 - 9 x^2

6 0
3 years ago
1. cot x sec4x = cot x + 2 tan x + tan3x
Mars2501 [29]
1. cot(x)sec⁴(x) = cot(x) + 2tan(x) + tan(3x)
    cot(x)sec⁴(x)            cot(x)sec⁴(x)
                   0 = cos⁴(x) + 2cos⁴(x)tan²(x) - cos⁴(x)tan⁴(x)
                   0 = cos⁴(x)[1] + cos⁴(x)[2tan²(x)] + cos⁴(x)[tan⁴(x)]
                   0 = cos⁴(x)[1 + 2tan²(x) + tan⁴(x)]
                   0 = cos⁴(x)[1 + tan²(x) + tan²(x) + tan⁴(4)]
                   0 = cos⁴(x)[1(1) + 1(tan²(x)) + tan²(x)(1) + tan²(x)(tan²(x)]
                   0 = cos⁴(x)[1(1 + tan²(x)) + tan²(x)(1 + tan²(x))]
                   0 = cos⁴(x)(1 + tan²(x))(1 + tan²(x))
                   0 = cos⁴(x)(1 + tan²(x))²
                   0 = cos⁴(x)        or         0 = (1 + tan²(x))²
                ⁴√0 = ⁴√cos⁴(x)      or      √0 = (√1 + tan²(x))²
                   0 = cos(x)         or         0 = 1 + tan²(x)
         cos⁻¹(0) = cos⁻¹(cos(x))    or   -1 = tan²(x)
                 90 = x           or            √-1 = √tan²(x)
                                                         i = tan(x)
                                                      (No Solution)

2. sin(x)[tan(x)cos(x) - cot(x)cos(x)] = 1 - 2cos²(x)
              sin(x)[sin(x) - cos(x)cot(x)] = 1 - cos²(x) - cos²(x)
   sin(x)[sin(x)] - sin(x)[cos(x)cot(x)] = sin²(x) - cos²(x)
                               sin²(x) - cos²(x) = sin²(x) - cos²(x)
                                         + cos²(x)              + cos²(x)
                                             sin²(x) = sin²(x)
                                           - sin²(x)  - sin²(x)
                                                     0 = 0

3. 1 + sec²(x)sin²(x) = sec²(x)
           sec²(x)             sec²(x)
      cos²(x) + sin²(x) = 1
                    cos²(x) = 1 - sin²(x)
                  √cos²(x) = √(1 - sin²(x))
                     cos(x) = √(1 - sin²(x))
               cos⁻¹(cos(x)) = cos⁻¹(√1 - sin²(x))
                                 x = 0

4. -tan²(x) + sec²(x) = 1
               -1               -1
      tan²(x) - sec²(x) = -1
                    tan²(x) = -1 + sec²
                  √tan²(x) = √(-1 + sec²(x))
                     tan(x) = √(-1 + sec²(x))
            tan⁻¹(tan(x)) = tan⁻¹(√(-1 + sec²(x))
                             x = 0
5 0
3 years ago
The gas tank of Wendy’s car was 23 full. She used 16 of a tank of gas when driving to and from work. Which equation shows how fu
liberstina [14]

Answer:

The 3rd choice: 2/3 tank - 1/6 tank = 1/2 tank

Step-by-step explanation:

I assume those numbers are fractions.

The gas tank of Wendy’s car was 2/3 full. She used 1/6 of a tank of gas when driving to and from work. Which equation shows how full the gas tank is now?

We subtract 1/6 from 2/3. We need to use the common denominator 6.

2/3 - 1/6 = 4/6 - 1/6 = 3/6

Now we reduce 3/6.

2/3 - 1/6 = 1/2

Answer: 2/3 tank - 1/6 tank = 1/2 tank

7 0
3 years ago
Other questions:
  • Lattice square to resolve 932X73
    11·1 answer
  • Complete the sentence to make it a true statement. 60 is 1/100 of
    6·1 answer
  • What is the final elevation of a bird starts at 20m and changes 16m
    15·1 answer
  • Stop the flood math worksheet<br>​
    11·1 answer
  • Look at the figure. Find TW
    12·1 answer
  • Morgan buys 2 T-shirts that cost $14.95 each and 1 pair of shorts that costs $23.89. He gives the cashier $60.00. How much chang
    8·2 answers
  • A triangle is shown on the graph:
    8·1 answer
  • Find the distance between the pair of points: (-3,-6) and (1,2).
    14·1 answer
  • Fill in the blank:
    13·1 answer
  • Given the function f(x)=2x-1<br> Evaluate: <br>a) 2f(x) <br> b) f(2x)​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!