Answer: a - 4.512 hours
b - 1.94 hours
Step-by-step explanation:
Given,
a) A(t) = 10 (0.7)^t
To determine when 2mg is left in the body
We would have,
A(t) = 2, therefore
2 = 10(0.7)^t
0.7^t =2÷10
0.7^t = 0.2
Take the log of both sides,
Log (0.7)^t = log 0.2
t log 0.7 = log 0.2
t = log 0.2/ 0.7
t = 4.512 hours
Thus it will take 4.512 hours for 2mg to be left in the body.
b) Half life
Let A(t) = 1/2 A(0)
Thus,
1/2 A(0) = A(0)0.7^t
Divide both sides by A(0)
1/2 = 0.7^t
0.7^t = 0.5
Take log of both sides
Log 0.7^t = log 0.5
t log 0.7 = log 0.5
t = log 0.5/log 0.7
t = 1.94 hours
Therefore, the half life of the drug is 1.94 hours
100deciliters equals 10 liters
Yes 0.034 is the correct answer
28
The outlier would be 28 because it is much lower than the rest of the numbers in the group and removing it would make the mean increase.
I am putting this into rows. Ex: row one has 0. row two has blank and seven.
1: 0
2: 9 7
3: - 9 6
4: 1 3
5: - 1 2
6: 1
So the answer on top would be 8 1 r 1.