Answer:
true
Step-by-step explanation:
the bigger the number of a negative integer, the smaller the value become
Write the equations in matrix,
![\left[\begin{array}{ccc}5&-1&1\\1&2&-1\\2&3&-3\end{array}\right] \left[\begin{array}{ccc}x\\y\\z\end{array}\right] = \left[\begin{array}{ccc}4\\5\\5\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-1%261%5C%5C1%262%26-1%5C%5C2%263%26-3%5Cend%7Barray%7D%5Cright%5D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%5C%5C5%5C%5C5%5Cend%7Barray%7D%5Cright%5D%20)
Using row transformation,
R₂ <---> R₃
![\left[\begin{array}{ccc}5&-1&1\\2&3&-3\\1&2&-1\end{array}\right] \left[\begin{array}{ccc}x\\y\\z\end{array}\right] = \left[\begin{array}{ccc}4\\5\\5\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-1%261%5C%5C2%263%26-3%5C%5C1%262%26-1%5Cend%7Barray%7D%5Cright%5D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%5C%5C5%5C%5C5%5Cend%7Barray%7D%5Cright%5D%20)
Using,
R₂ ---> R₂ - 2R₃
![\left[\begin{array}{ccc}5&-1&1\\0&-1&-1\\1&2&-1\end{array}\right] \left[\begin{array}{ccc}x\\y\\z\end{array}\right] = \left[\begin{array}{ccc}4\\-5\\5\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-1%261%5C%5C0%26-1%26-1%5C%5C1%262%26-1%5Cend%7Barray%7D%5Cright%5D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%5C%5C-5%5C%5C5%5Cend%7Barray%7D%5Cright%5D%20)
Using,
R₂ --- > (-1)R₂
![\left[\begin{array}{ccc}5&-1&1\\0&1&1\\1&2&-1\end{array}\right] \left[\begin{array}{ccc}x\\y\\z\end{array}\right] = \left[\begin{array}{ccc}4\\5\\5\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-1%261%5C%5C0%261%261%5C%5C1%262%26-1%5Cend%7Barray%7D%5Cright%5D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%5C%5C5%5C%5C5%5Cend%7Barray%7D%5Cright%5D%20)
Using row transformation,
R₂ <----> R₃
![\left[\begin{array}{ccc}5&-1&1\\1&2&-1\\0&1&1\end{array}\right] \left[\begin{array}{ccc}x\\y\\z\end{array}\right] = \left[\begin{array}{ccc}4\\5\\5\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-1%261%5C%5C1%262%26-1%5C%5C0%261%261%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%5C%5C5%5C%5C5%5Cend%7Barray%7D%5Cright%5D%20)
Using,
R₂ ---> R₂ - R₁/5
![\left[\begin{array}{ccc}5&-1&1\\0&11/5&-6/5\\0&1&1\end{array}\right] \left[\begin{array}{ccc}x\\y\\z\end{array}\right] = \left[\begin{array}{ccc}4\\21/5\\5\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-1%261%5C%5C0%2611%2F5%26-6%2F5%5C%5C0%261%261%5Cend%7Barray%7D%5Cright%5D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%5C%5C21%2F5%5C%5C5%5Cend%7Barray%7D%5Cright%5D%20)
Using,
R₃ ---> R₃ - 5R₂/11
![\left[\begin{array}{ccc}5&-1&1\\0&11/5&-6/5\\0&0&17/11\end{array}\right] \left[\begin{array}{ccc}x\\y\\z\end{array}\right] = \left[\begin{array}{ccc}4\\21/5\\34/11\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-1%261%5C%5C0%2611%2F5%26-6%2F5%5C%5C0%260%2617%2F11%5Cend%7Barray%7D%5Cright%5D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%5C%5C21%2F5%5C%5C34%2F11%5Cend%7Barray%7D%5Cright%5D%20)
∴ 5x-y+z = 4 ====(i)
11y-6z = 21 === (ii)
17z=34 === (iii)
from iii,
z=2.
Plug z=2 in ii to get y,
∴y=3.
Plug y and z values in i to get x,
∴x=1
Therefore the solution to the system of equations is (1,3,2)
We are given the equation:
13x^2 + 6√3 xy + 7y^2 - 16 = 0
Based on the general equation of conic sections:
Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0,
A = 13
B = 6√3
C = 7
D = 0
E = 0
F = -16
So we can find the graph of the equation by solving for the discriminate B^2 - 4AC
B^2 - 4AC, substitute given:
(6^2 * 3) - 4 (13 * 7) = -256
since the discriminate is less than zero, the graph could be a circle or a parabola. In this case, the values of A and C are not equal, then our graph is a parabola.
Answer:
It's 4
Step-by-step explanation: