Answer:
1.02 × 10⁶ g
Explanation:
Step 1: Given data
- Volume of the balloon (V): 5400 m³
- Absolute pressure (P): 1.10 × 10⁵ Pa
- Molar mass of He (M): 4.002 g/mol
Step 2: Convert "V" to L
We will use the conversion factor 1 m³ = 1000 L.
5400 m³ × 1000 L/1 m³ = 5.400 × 10⁶ L
Step 3: Convert "P" to atm
We will use the conversion factor 1 atm = 101325 Pa.
1.10 × 10⁵ Pa × 1 atm / 101325 Pa = 1.09 atm
Step 4: Calculate the moles of He (n)
We will use the ideal gas equation.
P × V = n × R × T
n = P × V / R × T
n = 1.09 atm × 5.400 × 10⁶ L / 0.08206 atm.L/mol.K × 280 K
n = 2.56 × 10⁵ mol
Step 5: Calculate the mass of He (m)
We will use the following expression.
m = n × M
m = 2.56 × 10⁵ mol × 4.002 g/mol
m = 1.02 × 10⁶ g
describes what occurs every time in a given situation
The three factors determine the chemical properties of an element:
<span><span>The number and arrangement of electrons in an atom
</span><span>The number of valence electrons
</span><span>The number and arrangement of electrons</span></span>
2.1648 kg of CH4 will generate 119341 KJ of energy.
Explanation:
Write down the values given in the question
CH4(g) +2 O2 → CO2(g) +2 H20 (g)
ΔH1 = - 802 kJ
2 H2O(g)→2 H2O(I)
ΔH2= -88 kJ
The overall chemical reaction is
CH4 (g)+2 O2(g)→CO2(g)+2 H2O (I) ΔH2= -890 kJ
CH4 +2 O2 → CO2 +2 H20
(1mol)+(2mol)→(1mol+2mol)
Methane (CH4) = 16 gm/mol
oxygen (O2) =32 gm/mol
Here 1 mol CH4 ang 2mol of O2 gives 1mol of CO2 and 2 mol of 2 H2O
which generate 882 KJ /mol
Therefore to produce 119341 KJ of energy
119341/882 = 135.3 mol
to produce 119341 KJ of energy, 135.3 mol of CH4 and 270.6 mol of O2 will require
=135.3 *16
=2164.8 gm
=2.1648 kg of CH4
2.1648 kg of CH4 will generate 119341 KJ of energy
Answer:
The volume increases because the temperature increases and is 2.98L
Explanation:
Charles's law states that the volume of a gas is directely proportional to its temperature. That means if a gas is heated, its volume will increase and vice versa. The equation is:
V₁/T₁ = V₂/T₂
<em>Where V is volume and T is absolute temperature of 1, initial state, and 2, final state of the gas.</em>
In the problem, the gas is heated, from 53.00°C (53.00 + 273.15 = 326.15K) to 139.00°C (139.00 + 273.15 = 412.15K).
Replacing in the Charles's law equation:
2.36L / 326.15K= V₂/412.15K
<h3>2.98L = V₂</h3>
<em />