1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alenkinab [10]
4 years ago
6

Given that a randomly chosen quadrilateral has four right

Mathematics
1 answer:
motikmotik4 years ago
3 0

Answer:

0.25

Step-by-step explanation:

complete question:  

Bart found 20 quadrilaterals in his classroom. He made a Venn diagram using the properties of the quadrilaterals, comparing those with four equal side lengths (E) and those with four right angles (R).

See attachment for the figure.

SOLUTION:

At Venn diagram there are 4 parts (20 pieces):

-> blue colored - quadrilaterals having four equal side lengths (3 pieces)

-> orange colored - quadrilaterals with four right angles (6 pieces)

-> blue and orange colored - quadrilaterals with four right angles and with four equal side lengths (2 pieces)

-> white colored - quadrilaterals without previous two properties (9 pieces).

Considering events:

A -> a randomly chosen quadrilateral has four right angles;

B -> a randomly chosen quadrilateral has four equal side lengths;

By using formula :  P(B|A)=\dfrac{Pr(A\cap B)}{Pr A}  in order to find probability that a randomly selected quadrilateral with 4 right angles also has four equal side lengths:

P(A\cap B)=\dfrac{2}{20},\\P(A)=\dfrac{8}{20},\\P(B|A)=\dfrac{\frac{2}{20}}{\frac{8}{20}} =\dfrac{2}{8}=\dfrac{1}{4} =0.25

You might be interested in
-3x^2+6x=0. Find the value of x.
siniylev [52]

Answer:

x=√2,-√2

Step-by-step explanation:

4 0
3 years ago
PLEASE HURRY WILL MARK BRAINLIEST!!!
LekaFEV [45]

Answer:

-7y+8x

Step-by-step explanation:

-2y-x-5y+9x

3 0
3 years ago
Read 2 more answers
Please help me to prove this!​
Sophie [7]

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B = C                → A = C - B

                                          → B = C - A

Use the Double Angle Identity:     cos 2A = 2 cos² A - 1

                                             → (cos 2A + 1)/2 = cos² A

Use Sum to Product Identity: cos A + cos B = 2 cos [(A + B)/2] · 2 cos [(A - B)/2]

Use Even/Odd Identity: cos (-A) = cos (A)

<u>Proof LHS → RHS:</u>

LHS:                     cos² A + cos² B + cos² C

\text{Double Angle:}\qquad \dfrac{\cos 2A+1}{2}+\dfrac{\cos 2B+1}{2}+\cos^2 C\\\\\\.\qquad \qquad \qquad =\dfrac{1}{2}\bigg(2+\cos 2A+\cos 2B\bigg)+\cos^2 C\\\\\\.\qquad \qquad \qquad =1+\dfrac{1}{2}\bigg(\cos 2A+\cos 2B\bigg)+\cos^2 C

\text{Sum to Product:}\quad 1+\dfrac{1}{2}\bigg[2\cos \bigg(\dfrac{2A+2B}{2}\bigg)\cdot \cos \bigg(\dfrac{2A-2B}{2}\bigg)\bigg]+\cos^2 C\\\\\\.\qquad \qquad \qquad =1+\cos (A+B)\cdot \cos (A-B)+\cos^2 C

\text{Given:}\qquad \qquad 1+\cos C\cdot \cos (A-B)+\cos^2C

\text{Factor:}\qquad \qquad 1+\cos C[\cos (A-B)+\cos C]

\text{Sum to Product:}\quad 1+\cos C\bigg[2\cos \bigg(\dfrac{A-B+C}{2}\bigg)\cdot \cos \bigg(\dfrac{A-B-C}{2}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =1+2\cos C\cdot \cos \bigg(\dfrac{A+(C-B)}{2}\bigg)\cdot \cos \bigg(\dfrac{-B-(C-A)}{2}\bigg)

\text{Given:}\qquad \qquad =1+2\cos C\cdot \cos \bigg(\dfrac{A+A}{2}\bigg)\cdot \cos \bigg(\dfrac{-B-B}{2}\bigg)\\\\\\.\qquad \qquad \qquad =1+2\cos C \cdot \cos A\cdot \cos (-B)

\text{Even/Odd:}\qquad \qquad 1+2\cos C \cdot \cos A\cdot \cos B\\\\\\.\qquad \qquad \qquad \quad =1+2\cos A \cdot \cos B\cdot \cos C

LHS = RHS: 1 + 2 cos A · cos B · cos C = 1 + 2 cos A · cos B · cos C   \checkmark

5 0
3 years ago
Find the area of the triangle with the following coordinates. A (-5,9) B (1,-7) C (8,4)
Virty [35]

<em><u>QUESTION</u></em><em><u> </u></em><em><u>:</u></em><em><u> </u></em><em><u>></u></em><em><u> </u></em><em><u>FIND </u></em><em><u>THE </u></em><em><u>ARE </u></em><em><u>OF </u></em><em><u>THE </u></em><em><u>TRIANGLE </u></em><em><u>WITH </u></em><em><u>THE </u></em><em><u>FOLLOWING </u></em><em><u>COORDINATES.</u></em>

<em><u>A.</u></em><em><u> </u></em><em><u>(</u></em><em><u>-</u></em><em><u>5</u></em><em><u>,</u></em><em><u>9</u></em><em><u>)</u></em>

<em><u>B </u></em><em><u>.</u></em><em><u> </u></em><em><u>(</u></em><em><u>1</u></em><em><u>,</u></em><em><u>-</u></em><em><u>7</u></em><em><u>)</u></em>

<em><u>C </u></em><em><u>.</u></em><em><u> </u></em><em><u>(</u></em><em><u>8</u></em><em><u>,</u></em><em><u>4</u></em><em><u>)</u></em>

<em><u>ANSWER </u></em><em><u>:</u></em><em><u>></u></em><em><u> </u></em><em><u>A.</u></em>

<em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u>(</u></em><em><u>-</u></em><em><u>5</u></em><em><u>,</u></em><em><u>9</u></em><em><u>)</u></em><em><u>. </u></em><em><u> </u></em><em><u> </u></em>

<em><u>HOPE </u></em><em><u>IT </u></em><em><u>HELPS</u></em>

<em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u>THANK </u></em><em><u>ME </u></em><em><u>LATER</u></em><em><u>. </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em>

<h2><em><u>#</u></em><em><u>C</u></em><em><u>A</u></em><em><u>R</u></em><em><u>Y</u></em><em><u> </u></em><em><u> </u></em><em><u>ON </u></em><em><u>LEARNING </u></em></h2>
4 0
3 years ago
MARKING BRANLIEST!!
grin007 [14]
Area of a triangle is = 0.5bh
if the height (h) is 4 less than base (b) then h = b - 4

48 = 0.5(b)(b - 4)
48/0.5 = b² - 4b
96 = b² - 4b
b² - 4b - 96 = 0
(b + 8)(b - 12) = 0

b must be either -8 or 12

since a distance can't be negative that means
the base is 12
6 0
3 years ago
Other questions:
  • Kimberly wrote a check for $58 to pay her monthly
    13·2 answers
  • How do you round 210.097 the nearest tenth
    11·2 answers
  • Point G is located at (3, −1) and point H is located at (−2, 3). Find y value for the point that is the distance from point G to
    8·1 answer
  • Round 7.92 + 5.37 to estimate​
    15·1 answer
  • Expectations: Post at least 3 different ways to represent the number
    9·1 answer
  • 1. A small bag of rice weighs 5/8 Kg. How
    13·1 answer
  • Which expression is equivalent to 1/2 (6x + 1/2)
    13·1 answer
  • Could someone please explain how to plot the x-intercept of the first equation and what the answer would be?
    13·1 answer
  • There are 20 flowers in a bouquet, and 2 of them are roses. What percent of the flowers are roses?
    10·2 answers
  • I need this question answered
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!