Answer:
x = -5, and y = -6
Step-by-step explanation:
Suppose that we have two equations:
A = B
and
C = D
combining the equations means that we will do:
First we multiply both whole equations by constants:
k*(A = B) ---> k*A = k*B
j*(C = D) ----> j*C = j*D
And then we "add" them:
k*A + j*C = k*B + j*D
Now we have the equations:
-x - y = 11
4*x - 5*y = 10
We want to add them in a given form that one of the variables cancels, so we can solve it for the other variable.
Then we can take the first equation:
-x - y = 11
and multiply both sides by 4.
4*(-x - y = 11)
Then we get:
4*(-x - y) = 4*11
-4*x - 4*y = 44
Now we have the two equations:
-4*x - 4*y = 44
4*x - 5*y = 10
(here we can think that we multiplied the second equation by 1, then we have k = 4, and j = 1)
If we add them, we get:
(-4*x - 4*y) + (4*x - 5*y) = 10 + 44
-4*x - 4*y + 4*x - 5*y = 54
-9*y = 54
So we combined the equations and now ended with an equation that is really easy to solve for y.
y = 54/-9 = -6
Now that we know the value of y, we can simply replace it in one of the two equations to get the value of x.
-x - y = 11
-x - (-6) = 11
-x + 6 = 11
-x = 11 -6 = 5
-x = 5
x = -5
Then:
x = -5, and y = -6
Answer:
Step-by-step explanation:
Let X is the number of cards Kenny has
Let Y is the number of cards Lee has
1. Kenny had 5/7 more trading cards than lee, it means
X = Y + 5/7X (1)
2. After Kenny collected 50% more trading cards, he had 220 more trading cards than lee, it means:
X + 50%X = Y + 220 (2)
So, we solve the 2 equations to find out X and Y
<=> X =
and Y =
<=> X ≈181 and Y ≈ 52
Answer:
f(x + h) = 3x³ + x² + 9h²x + 3h³ + h² + 9hx² + 2hx
General Formulas and Concepts:
- Order of Operations: BPEMDAS
- Distributive Property
- Expand by FOIL (First Outside Inside Last)
- Combining like terms
Step-by-step explanation:
<u>Step 1: Define function</u>
f(x) = x² + 3x³
f(x + h) is x = x + h
<u>Step 2: Simplify</u>
- Substitute: f(x + h) = (x + h)² + 3(x + h)³
- Expand by FOILing: f(x + h) = (x² + 2hx + h²) + 3(x + h)³
- Rewrite: f(x + h) = (x² + 2hx + h²) + 3(x + h)²(x + h)
- Expand by FOILing: f(x + h) = (x²+2hx+h²) + 3(x² + 2hx + h²)(x+h)
- Distribute/Expand: f(x + h) = (x²+2hx+h²) + 3(x³+3hx²+3h²x+h³)
- Distribute 3: f(x + h) = (x²+2hx+h²)+(3x³+9hx²+9h²x+3h³)
- Combine like terms: f(x + h) = 3x³+x²+9h²x+3h³+h²+9hx²+2hx
Answer:
B. No solutions
Step-by-step explanation:
8x+2y=14
8x+2y=4
These linear equations are in standard form, and the Ax values are the same (8x) and the By values are the same (2y). The only value that is the different is the C values (14 and 4), which will be the cause of a no solution for this system of equations.
Answer:
Distributive
Step-by-step explanation: