Answer:
the brightest found are Blue - White with
Explanation:
The energy emission of objects increases with their temperature, specifically Wien described the process in an expression
T = 2,898 10⁻³
With this expression we can find the temperature of the stars by the color they emit.
Specifically the Sun has a color of 550 nm which corresponds to 5400K
bright stars have a BLUE color corresponding to 7500K
the brightest found are Blue - White with a temperature of 20000K
A) See ray diagram in attachment (-6.0 cm)
By looking at the ray diagram, we see that the image is located approximately at a distance of 6-7 cm from the lens. This can be confirmed by using the lens equation:

where
q is the distance of the image from the lens
f = -10 cm is the focal length (negative for a diverging lens)
p = 15 cm is the distance of the object from the lens
Solving for q,


B) The image is upright
As we see from the ray diagram, the image is upright. This is also confirmed by the magnification equation:

where
are the size of the image and of the object, respectively.
Since q < 0 and p > o, we have that
, which means that the image is upright.
C) The image is virtual
As we see from the ray diagram, the image is on the same side of the object with respect to the lens: so, it is virtual.
This is also confirmed by the sign of q in the lens equation: since q < 0, it means that the image is virtual
Thank you for posting your question here at brainly. I would say yes to the above question. <span>Work done is the force applied multiplied by the distance travelled. </span><span>Wd = F x d. </span><span>So if d increases, Wd increases also. I hope the answer will help you. </span>
Answer:
3300J
Explanation:
Work done is the energy that is lost by the skater
Formula for workdone = 1/2*mV^2
m = 66kg
V = 10m/s
Work done = 1/2 * 66 * 10^2
= 3300J
The tennis ball lands at a point 40.4 m from the base of the building.
The tennis ball is projected with a horizontal velocity <em>u</em> from a window, which is at a height <em>y</em> from the ground. The ball lands at a distance <em>x</em> from the base of the building. Let the ball take a time <em>t</em> to reach the ground. In the time <em>t</em> ,the ball falls a vertical distance <em>y</em> and also travel a horizontal distance <em>x</em>.
The initial vertical velocity of the ball is zero, since the ball is projected in the horizontal direction. The ball falls down under the action of gravitational force.
Thus, use the equation of motion,

rewrite the expression for <em>t</em> and calculate the value of <em>t</em> using 9.81 m/s²for <em>g</em> and 500 m for <em>y</em>.

The horizontal distance <em>x</em> is traveled using the constant velocity <em>u </em>since no force acts on the ball in the horizontal direction.
Therefore,

Substitute 4 m/s for <em>u</em> and 10.096 s for <em>t</em>

Thus, the ball lands at a point 40.4 m from the base of the building.