A because all of the numbers add up to 100 and there is 30 red so that would make it 30/100 and simplified it would be 3/10
Step-by-step explanation:
(1 + cos θ + sin θ) / (1 + cos θ − sin θ)
Multiply by the reciprocal:
(1 + cos θ + sin θ) / (1 + cos θ − sin θ) × (1 + cos θ + sin θ) / (1 + cos θ + sin θ)
(1 + cos θ + sin θ)² / [ (1 + cos θ − sin θ) (1 + cos θ + sin θ) ]
(1 + cos θ + sin θ)² / [ (1 + cos θ)² − sin² θ) ]
Distribute and simplify:
(1 + cos θ + sin θ)² / (1 + 2 cos θ + cos² θ − sin² θ)
[ 1 + 2 (cos θ + sin θ) + (cos θ + sin θ)² ] / (1 + 2 cos θ + cos² θ − sin² θ)
(1 + 2 cos θ + 2 sin θ + cos² θ + 2 sin θ cos θ + sin² θ) / (1 + 2 cos θ + cos² θ − sin² θ)
Use Pythagorean identity:
(2 + 2 cos θ + 2 sin θ + 2 sin θ cos θ) / (sin² θ + cos² θ + 2 cos θ + cos² θ − sin² θ)
(2 + 2 cos θ + 2 sin θ + 2 sin θ cos θ) / (2 cos² θ + 2 cos θ)
(1 + cos θ + sin θ + sin θ cos θ) / (cos² θ + cos θ)
Factor:
(1 + cos θ + sin θ (1 + cos θ)) / (cos θ (1 + cos θ))
(1 + cos θ)(1 + sin θ) / (cos θ (1 + cos θ))
(1 + sin θ) / cos θ
Answer:
a=48 units^2
Step-by-step explanation:
The area of a rectangle can be found using:
a=bh
We know the base is 6, and the height is 8, so we can substitute them in
a=6*8
a=48
Area uses units squared, so,
a=48 units^2
About 175 ninth grade boys. 2/25 is equal to 0.08. if we take the 14 students and divide it by 0.08, we can get the total of 175 ninth grade boys.
Let X= the number of tickets sold at $35 each
Let 350 -X = the number of tickets sold at $25 each
The number of tickets sold for each type will be computed as follows:
X(35)+(350-X)25=10250
35X+8750-25X=10250
10X=10250-8750
X=1500/10
X=150 the number of tickets sold at $35 each
350-150 the number of tickets sold at $25 each
To recheck:
150(35)+200(25)
5250+5000
10250