F = ma.
Note Force should be = 150 N. Acceleration = 30 m/s2 ( Am presuming for your question you meant to write 30m/s2 and not 30m/s as you wrote)
150 = m ( 30)
150/30 = m.
5 = m
Mass of the object = 5 Kg.
Answer:
10.347 minutes.
Explanation:
According to F = ma, she exerts force on camera of the magnitude
F = 0.67Kg*12m/
= 8.04N, assuming it took her one second to accelerate camera to 12m/s, then by newtons third law, which says every action has equal and opposite reaction , the camera exerts the same amount of force on the astronaut which gives her acceleration of a =
.
and velocity of V = 0.1130801680m/s.
at this velocity , the astronaut has to cover the distance of 70.2 meters, it will take her 620.7985075s = 10.347 min to get to the shuttle (using S = vt).
Answer:
8.85m/s
Explanation:
The potential energy the watermelon held before dropping is Ep=mgh=2*9.8*4=78.4J.
When it strikes the ground, all of its Ep will transfer into Ek, so 1/2*m*v^2=78.4.
We already knew that m=2, so insert that in, we will get the V^2=78.4 m/s, V=8.85 m/s
Answer:
The net magnetic flux through any closed surface must always be zero.
Answer:
The average force ≅ 519.44 N.
Explanation:
Impulse = change in momentum of a body
i.e Ft = m(v - u)
where F is the force, t is the time, m is the mass of the body, v is the final velocity and u is the initial velocity.
m = 55.0 g (0.055 Kg), t = 0.00360 s, v = 34.0 m/s, since the ball was initially at rest; u = 0 m/s
So that,
F x 0.00360 = 0.055(34 - 0)
F x 0.00360 = 0.055 x 34
= 1.87
F = 
= 519.4444
The average force exerted on the ball by the club is approximately 519.44 N.